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Consider the minimum point of the strong constraint cost function (the
‘analysis’)

What should we expect Jp;, to be?
T
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@ State vector size n, number of observations p.

@ Assume B, R correct, 7, .# perfect and linear, Gaussian error statistics.

@ (n+p)/2
Q n/2
Q p/2

@ No theoretical value

Hmmm ...
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Some challenges ahead

@ Methods assume that error cov. matrices are correctly known.
@ Representing By.

e Better models of By.
o Flow dependency (e.g. Ensemble-Var or hybrid methods).

@ Representing R;.

o Allowing for observation error covariances.
@ Representing Q;.
@ Numerical conditioning of the problem.

@ Application to more complicated systems (e.g. high-resolution models,
coupled atmosphere-ocean DA, chemical DA).

@ Variational bias correction.
@ Moist processes, inc. clouds.

o Effective use on massively parallel computer architectures.
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Making variational DA work — control variable transforms

@ Bg is an n x n matrix.
e In operational problems By is too large to store, let alone invert.
e An unknowable matrix.
e Can model the essential features of By with a change of variable,
0x = Udv (a control variable transform).

o Hypothesise that the problem is much simpler when posed in terms of dv
rather than 6x.

Cost function — Minimise w.r.t. Ov — Convert back
in terms of ov (trivial B-matrix) to Ox
N iterate

e Equivalent to solving original problem w.r.t. §x with Bo = UUT. See
Bannister (2008).
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CVTs in more detail

o lllustrate in simplest case: 3DVar with x& = x} (and drop time index)
, 1 1
SV (8x) = S8XTBTMSx+ 3 (y — A (") HSx) R (o).

o Make a change of variable: dx = Udv and assume B-matrix of errors in
the v representation is identity.

B = (6x8x"), =U(vév") U" =UIUT =UU",
@ Substitute into J*PY4(5x): gives a cost function w.r.t. Sv
PPVar(§y) = %SVTSV—F % (y— 2 (x") - HU6v)TR*1 (o)

Vs PV = Sv—UTHT (y — #(x") — HUSV)
x* = x"+U (argmin [PV (5v)]).
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Estimating a B-matrix

X = X2 B:<(xb—xt) (xb—xt) >b
<(X{)_X{)2>b <(X{)_X{)(XB_X}7)>b
(a0 =)y (B,

(), : average over population of possible backgrounds.

b

The ‘truth’, x!, that appears in the definition of error, £ = x> —x', is

unknowable, so need a proxy for this quantity.
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Approaches to estimating a B-matrix (1)

“Canadian quick” method

X —xt~ (XP(t+ T)—x"(T)) /V2.

Take population from one long time run, Polavarapu et al. (2005).
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Approaches to estimating a B-matrix (2)

Analysis of innovations

Choose a pair of direct/independent obs locations separated by Ar:

[)/r _X]rj] [Yr—f—Ar _XIYJ+AI’:| =
[{yr _Xﬁ} - {Xlt') _Xﬁ}] [{)/r—l-Ar _XﬁJrAr} - {X?+Ar _X;+Ar}] =

[ef —&7] [efs ar —EP4ar]
Take the expectation:
([ef —&r] [elvar—Ehadd) = (&&linr)+{(EE0sn,)
= 63 Onro+ ofcorb(Ar).

Above assumes obs and bg errors, as are errors between obs at different
locations. Take population from many pairs with same Ar. Rutherford
(1972), Hollingsworth and Lénnberg (1986), Jarvinen (2001).
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Approaches to estimating a B-matrix (3)

National Meteorological Center (NMC) method

Choose pairs of lagged forecasts valid at the same time, e.g.:
X —x' ~ (xqg(£) —x34(t)) / V2.

Take population from difference at many times. Parrish and Derber (1992),
Berre et al. (2006).
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Approaches to estimating a B-matrix (4)

Ensemble method

If you have an ensemble that is correctly spread:

or

x°—xt ~ (xl(’,-)—xla-)>/\f2.

Take population from ensemble members and over many times. Houtekamer
et al. (1996), Buehner (2005), Bonavita et al. (2015).
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