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The data assimilation problem

@ To combine imperfect data from models, from observations distributed
in time and space, exploiting any relevant physical constraints, to
produce a more accurate and comprehensive picture of the system as it
evolves in time.

Traditionally we are interested in a state of the system.

This is just a first moment of the posterior PDF.

“All models are wrong ..." (George Box)

“All models are wrong and all observations are inaccurate.”
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Bayes' Theorem

p(x) x p(y[x)
p(y)
prior distribution x likelihood

p(xly) =

posterior distribution =

normalizing constant

@ Prior distribution: PDF of the state before observations are considered
(e.g. PDF of model forecast).

@ Likelihood: PDF of observations given that the state is x.

o Posterior: PDF of the state after the obs. have been considered.
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The Gaussian assumption

@ PDFs are often described by Gaussians (normal distributions).

@ Gaussian PDFs are described by a mean and covariance only.

For n variables (nD): x ~ N((x),C)
PO =t x
(2m)"det(C)
1

exp— (x— ()T (x~ (x))

For 1 variable (1D): x ~ N((x) ,62)

1 (x—{x))?
P(x) = Wexp— 552
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Meaning of x and y

X (4D)

I X (3D)
x(0) - -

LT

e x? analysis; x° background state; 8x increment (perturbation).
@ y observations; y™ = J#(x) model observations.

@ J#(x) is the observation operator / forward model.

@ Sometimes x and y are for only one time (3DVar).

@ x-vectors have n elements; y-vectors have p elements.
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Back to the Gaussian assumption

Prior: mean x°

, covariance B

L l(x—xb)TB*1 (x—xb)

P = arde®) ™ 2

Likelihood: mean 7 (x), covariance R

1 1 ., Tp-1 .,
P(y[x) = WGXP—E()/—%(X)) R (y—7(x))

Posterior
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Variational DA — the idea

@ In Var., we seek a solution that maximizes the posterior probability
p(x]y) (maximum-a-posteriori).
e This is the most likely state given the observations (and the background),
called the analysis, x?.
o Maximizing p(x]y) is equivalent to minimizing —In p(x|y) = J(x) (a
least-squares problem).

pily) = Coxpy [(x—x)"B 7 (x—x)
+(y—# ()" R (y = #(x))]

S = nC g (x-x) B (x—x)
£y AR (y ()

= constant (ignored) + J°(x)+ J°(x)
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Exercises — practise the ‘short hand’ algebra

@ u'v (product of 1 x n and nx 1 vectors [an inner product], result is 1 x 1 [a scalar])

T
u1 Vi

1%
(0w (™
= Sl =uvat-+upva
Up Vn Vn
@ u'Av (product of a 1 x n, an nx n matrix, and a nx 1 vector [an inner product in a
particular norm], result is 1 x 1 [a scalar])

Ain - A vi ) A11vi 4+ At1nva

(i - un) (un
Anl o Ann Vn Anl vit+-+ Ann Vn

ul[A11V1+"'+A1nVn]+---+un[An1V1+"'+AnnVn]

@ uvT (product of nx 1 and 1 x m vectors [an outer product], result is n x m matrix)

uy uivy 0 U1Vm

(a - )

Up upvi UnVm
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Four-dimensional Var (4DVar)

To find the ‘best’ estimate of the true state of the system (analysis),
consistent with the observations, the background, and the system dynamics.

X A Xa0 yt A
Xa
X0 / - T
””””””””””””””” Xb
6XO { 77777777777777777777777777777 A/ T
CECMWF
P>
N time
t, t=t,

Ross Bannister Variational data assimilation |



Towards a 4DVar cost function

Consider the observation operator in this case:

Xo 5 (xo)

=2 |=|
XT %T(XT)

So the J° is (assume that R is block diagonal):

Yo — 7 (o) 0 0 yo — 4 (Xo)
: 0 :
0 Ry YT — 7 (XT)

T
1 (
5 :
yT — A7 (XT)
1
2

subject to the constraint x; 11 = .; (x;)
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The 4DVar cost function (‘full 4DVar')

subject to the constraint x; 1 = .#; (x;)

x§ a-priori (background) state at to.
y; observations at t;.
S (x;) observation operator at t;.

By background error covariance matrix at tp.

R; observation error covariance matrix at t;.
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How to minimize this (‘full 4DVar') cost function?

Minimize J(x) iteratively

A na(ljn‘: shfe

n=2 EackJmum(

chate >k

S Cortouss
of constant T

Use the gradient of J at
each iteration:

k+1 —
Xp

= x§ +aVJ(x§)

Ross Bannister

The gradient of the cost
function

8J/8(x0)1

9J/3(x0)n

—VJ points in the direction of
steepest descent.

Methods: steepest descent
(inefficient), conjugate
gradient (more efficient), ...
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The gradient of the cost function (wrt x(tp))

Either:
@ Minimise J(xq) w.r.t. xg with x; = A1 (AMi_2(--- Mp(x0))).
@ Minimise J(x) = J(Xo,X1,...,XT) W.r.t. Xo,X1,...,XT subject to the
constraint
Xjy1 — i (xj) =0
T-1

L(x,A)=J(x)+ Z Aiyr (Xig1 — A (x7)).

i=0
Each approach leads to the adjoint method
@ An efficient means of computing the gradient.
o Uses the linearised/adjoint of .#; and 5#: MT and HT (see next slides).
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The adjoint method

Equivalent gradient formula:

o
VJ=VJ(xe) = Vh(x0)+ V(xo)
= By (x0—xg)
- i Mg ... M HR; ™ (yi — #i(xi))
where M; = 8/1/_/?(x,-)/8x,- and H; = 0.74(x;)/9x;
2]
Aryr = 0
A= HIRM(yi— (%) + M A
Ao = Vi

V) = VL+VJ,
= Bal(XO—Xg)-FA,O
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The adjoint method

N« M hie, = BB %p) - g
2lte)> Xlt) s Mk - H R (W) /)

AW > FORWARD MODEL INTEGRATION —
i —>  Xlt) —> xlble > xftn)s s AlE)=
o 3
- 77, (1t Phalctts)) Mot
g | J %

- . = D — - e = 67
AR / L1
E’i /\01’4:/\1 « AN :MT');,, s e /\T-I=MI_,>\7 P A= M1 Sy

S A sl s T8,
/ ADJOINT MODEL INTEGRATION K
[ ATer =2

VTl = M+ B () k)
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Simplifications and complications

The full 4DVar method is expensive and difficult to solve.
Model .#; is non-linear.

Observation operators, 7% can be non-linear.

Linear # — quadratic cost function — easy(er) to minimize,

SO~ %(y —ax)?/o2.

@ Non-linear 5 — non-quadratic cost function — hard to minimize,
o~ 3y —f(x))?*/oZ.

@ Later will recognise that models are ‘wrong’!

Look for simplifications: Complications:
Incremental 4DVar (linearized 4DVar) Weak constraint
3D-FGAT (imperfect model)
3DVar
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Incremental 4DVar (1)

define reference trajectory: xﬁl =M (x?)
X = X} + 8%, X5 = X§ + 8x§
Xiy1 = Mi(x;)=M; ( + 0x; )
X?—i-l + 5X,’+1 ~ M (XF) + M;6x; 6X,’+1 ~ M;0x;
yi
PR oy
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Incremental 4DVar (2)

Hxo) = 5 (6x0—5x3) By (o) +
1< T
> (yi — (%) — H;8x;) R (o)

5X,’ MiflMifz...M()SXo

Q

e Initially set reference to background, x§ = XB.

@ ‘Inner loop: iterations to find dx§ = argminJ(8xq) (use adjoint
method).

e ‘Outer loop’: iterate x§ — x§ + 6x3
@ Inner loop is exactly quadratic (e.g. has a unique minimum).

@ Inner loop can be simplified (lower res., simplified physics).
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How to minimize this (‘incremental 4DVar') cost function?

Minimize J(6x) iteratively

The gradient of the cost
function

N

/
/ A otk 77 9J/9(x0)1
[V o (e VJ(8xq) = :

(dx.) >
), 9J/3(8%0)n
ftf‘anl‘m; state for Fhic outer /mf

$xe =0 —VJ points in the direction of
Use the gradient of J at each steepest descent.
iteration:

Methods: steepest descent
SxEt = 5x§ + aVJ(Sx§) (inefficient), conjugate
gradient (more efficient), ...
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Simplification 1: 3D-FGAT

o Three dimensional variational data assimilation with first guess (i.e. xX)
is computed at the appropriate time.

o Simplification is that M; — I, i.e. 0x; = M;_1...Mydxg — 8xg.

JPFGAT(§x0) = = (8xo— 5X8)T By' (o) +

NI~ N

T~

(y,- — %(XF) — H;SXQ)T RITl (o)

i=0
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Simplification 2: 3DVar

@ This has no time dependence within the assimilation window.
@ Not used (these days “3DVar” really means 3D-FGAT).

J3DVar(5XO) — 1 (5X0 - 5X8)T Bal (.) +
Z —H; 5X0) R (o)

3DVar is not an approx. if all obs. in this cycle are at t =0. For x§ = x{:

1 _ 1 T,_
POVar(§xg) = 75ng 186x0+ = (yo — 5 (x5) — H05xo) R, s (o)
Setting VJ3PVar  — 16x0 - HTR (yo — %”o(xo) H05xo) =0
Gives xj =xg+0x0 = xp+ (B’ +HiRy 'Ho) HERgl (yo— 7%(x3))
As the Kalman Filter! x[b) + By Hg (Ro +HgBg Hg) - (yo — %(XB))




Reminder: the Kalman Filter

P!
Kt

Xt+1
f
P

H:

M,

Xt + K (ye — A4 (xt))
(1I—KeHe) P}

-1
PIH] (R.+H.PIH]) ™

M (xY) (B +H™R™'H) BH"

MPiM; =H'R! (R+HBH")

9 (H4(x))
X

9 (A+(x))

X

X=X

—yd
x=x}

Ross Bannister Variational data assimilation |



Properties of 4DVar

@ Observations are treated at the correct time.

@ Use of dynamics means that more information can be obtained from
observations.

e Covariance By is implicitly evolved,
Bi=(M;_1...Mg)Bo(M;_;...Mo)".
@ In practice development of linear and adjoint models is complex.

o M;, ;, M;, H;, MT, and HT are subroutines, and so ‘matrices’ are
usually not in explicit matrix form.

But note
@ Standard 4DVar assumes the model is perfect.

@ This can lead to sub-optimalities.

@ Weak-constraint 4DVar relaxes this assumption.
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Weak constraint 4DVar

Modify evolution equation: -
Ny

Xip1 = Mi(Xi)+n; * tn.

where 1; ~ N(0,Q;) >

;O time t;tr

‘State formulation’ of WC4DVar

wCe b 0 1T71 TA~-1

Jiate (X0, x7) = L+ S+ 5 Y, (xiy1 — ()" Q;* (o)
i=0

‘Error formulation’ of WC4DVar

1T*1 -
Jorror (0, Mg M 7-1) = S+ L+ 5 ) niQp
i=0
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Implementation of weak constraint 4DVar

@ Vector to be determined (‘control vector’) increases from n in 4DVar to
n+n(T—1) in WC4DVar.

@ The model error covariance matrices, Q;, need to be estimated. How?

@ The ‘state’ formulation (determine xg,...,x7) and the ‘error’
formulation (determine xq,Mg...,N7_;) are mathematically equivalent,
but can behave differently in practice.

@ There is an incremental form of WC4DVar.
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Summary of 4DVar

@ The variational method forms the basis of many operational weather and
ocean forecasting systems, including at ECMWF, the Met Office,
Météo-France, etc.

e It allows complicated observation operators to be used (e.g. for
assimilation of satellite data).

@ It has been very successful.
@ Incremental (quasi-linear) versions are usually implemented.

o It requires specification of By, the background error cov. matrix, and
R;, the observation error cov. matrix.

@ 4DVar requires the development of linear and adjoint models — not a
simple task!

@ Weak constraint formulations require the additional specification of Q.
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