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Probability density functions
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Properties and operations
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Normalization:
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Expected value: center of mass of the distribution (barycentre/centroid)
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Joint, conditionals, marginals

joint pdf (x, y) marginal pdf (y) ~ conditional pdf (y|x)
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Representing pdf's

Parametric representation .
pdf (2) P pdf (z;0)
Eg:
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The Dirac delta function
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Properties:
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Bayes theorem

Likelihood of the state to give these observations

j I?r distribution of the state variable .
p(y|z)
p(zly) = p(x)
A p(y)

Marginal distribution of the observations.

Posterior probdbility distribution of the state variables given the observations.

How to get these elements?



Nonlinear data assimilation

3DVar and 4Dvar and (Ensemble) Kalman Filters and Smoothers assume Gaussian pdfs,
so we only need the mean and covariance. For nonlinear data assimilation we need the

whole pdf.
Assume the model equation reads

dr = f(x)dt +dB with  dB ~ N(0,Qdt)

then the corresponding evolution equation for the pdf of x reads:
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Nonlinear data assimilation

Forecast between observations:
Continuous system:
- With model error (Wiener process): Fokker-Plank equation.
- Without model error: Liouville equation

Discrete system:

- With model error. Transition probabilities. Chapman-Kolmogorov equation.

- Without model error. Chapman-Kolmogorov equation using Dirac deltas.

Analysis at observation times:
- Bayes Theorem

But how to do this in high-dimensional systems???
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The simplest particle filter

plyl2)p(x)

plaly) =
J p(yle)p(z) da
l Use ensemble | ,)(;) — Z\: %(g(m — ;)
N =1
plxly) = Z w;0(x — x;)
with W; = ])(?J|’U,) the weights.
> plylz;)




What are these weights?

The weight w; is the normalised value of the likelihood of the state x; to give these
observations.

For Gaussian distributed variables it is given by:

w; X p(y!x,;)

x exp 5 (y— H(w) B (y — H(z)

One can just calculate this value
That is all !!!

Or is it? More needed for high-dimensional problems...
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Particle filtering in time

weighting weighting

If we iterate this in time we need to
weight every time there is an
observation.

Note that after some time one
particle gets all the weight...




Weight degeneracy and resampling




Simple Importance Resampling

weighting resampling weighting

Particle filters in high-
dimensional systems are
degenerate even with
resampling:

Ne 633]?[Dgff]
Snyder et al 2008

Deyy < Ny indep

Ades and Van Leeuwen 2013




A simple resampling scheme

1. Put all weights after each other on the unit interval:

OM‘I

w1 w2 w3 w4 w5 we w7w8 wowv10

2. Draw a random number from the uniform distribution over [0,1/N], in this case with 10

members over [0,1/10].
3. Put that number on the unit interval: its end point is the first member drawn.

0 w 1
4. Add 1/N to the end point: the new end point is our second member. Repeat this until
N new members are obtained.

0] Y R | R A Y N N | S A E—

w1 w2 w3 w4 wH w6 w7w8 wow10
5. In our example we choose m1 2 times, m2 2 times, m3, m4, m5 2 times, m6 and m7.




Example: Kuramoto-Shivashinski
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Non-linear observations
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Example: Kuramoto-Shivashinski
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What can we do?

Three options have been explored:
1. Localization

2. Proposal densities

3. Particle Flows
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Localization in Particle Filters

Easy to make weights spatially varying, similar to observation-space localisation in ETKF.

Two issues:
- How to combine particles from different areas in the domain.

- Number of observations is often too large in local area, still degenerate.

Ensemble Transform Particle Filter (ETPF, Reich, 2014)

Poterjoy (2014, 2022) Complicated scheme that mixes prior and posterior samples and sets
minimum weight(!)



Proposal densities

Rewrite Bayes Theorem as

p(y|z) p(x)
p(y) a(aly) W

in which g(x/y) is a so-called proposal density that depends on the observations!

p(zly) =

Now draw samples x; from the proposal density instead of from p(x), leading to weights

_ plylzi) p(i)
p(y) q(zily)

The samples x; know about the observations so the likelihood will be larger, leading to
more equal weights.
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How to choose the proposal density?

The proposal density depends on the observations, hence we can use any other data-
assimilation method to generate the samples:

- 3Dvar, gives the so-called optimal proposal density
- 4DVar

- LETKF

- something simple, such as nudging

- synchronization

This is a very natural and principled way to build hybrid schemes without approximations
(apart from the finite ensemble).

This has not been explored to the full...



Nonlinear data assimilation: Particle flows

Bayes Theorem p(gjly) = p(y|x)p(w)

/ p(y)

Posterior pdf Prior pdf

The prior and posterior can be for a model state (filter) or a model trajectory (smoother)
or a set of parameters, or a combination of these.



Particle flow in pseudo time
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Posterior pdf Prior pdf




Particle Flow converged on posterior pdf

Not degenerate by construction

Posterior pdf Prior pdf

Hu, C-C, and P.J. van Leeuwen (2021) A particle flow filter for fully nonlinear high-dimensional data assimilation.,
Q.J. Royal Meteorol. Soc., doi: 10.1002/qj.4028



What is a particle flow filter/smoother?

* A particle flow moves particles iteratively from samples of the prior to samples of the
posterior with a flow field fs(x) in which = is a model state/trajectory over the time window

% — fs (.CE) hence, for pdf: Ds — _vx . (ps (x)fs (ZIJ))

* The flow field fs(x)can be chosen in many ways, let’s choose an optimal way.

* ‘Optimal’ depends on distance metric, we use Kullback-Leibler divergence between
intermediate pdf ps(z) and the posterior pdf p(x\y).

* To solve the problem we embed the flow field in a Reproducing Kernel Hilbert Space (Liu &
Wang 2016).



Finding the flow field

Kullback-Leibler divergence (or relative entropy):

KL(p(@)p(ely)) = [ p(o)log p(( 7). g

z|y)

dKL _ / dps (@) [1 + log ps("’f)} dz

ds ds p(z|y)
Use FP equation for the intermediate pdf p,(x):

dKL ps(z)
/WS sl {”k’gpwy)} o

Hence




A practical method for the flow field

We found: dé(_SL _ /ps(ili)fs(flf) -V, log (;(;(g)) dx

Assume f((x) is in a Reproducing Kernel Hilbert Space:

fs(x) = (K(z,.), f(.))

Since we have ‘total’ freedom on f,(x) we still solve full problem.
Use this in the expression above to find:

df;L i </p3(x)K(x’,-)Vm bg(ps(fb)) dx,fs(.)>}_

p(z|y)
= (VKL, fs(.)) » with VKL the gradient of KL.




The flow field

The distance reduces if fs ({,Ij) — —CLVKL(ZI?)

for some scalar a.
We can write:

VKL(z) = / pe(z VK (2, 2) V0 log (ps(z”/)) dz’

p(z'|y)
=~ [ p@) K@\ 2) V. logp(e'ly) + Vo K (o', )] da

Using a particle representation for p.(x) gives for the flow field:
1 N
folw) =~ S [klw},0)Vas logplaily) + Vask(z}, )

1=1



Particle implementation

The evolution equation for each particle is now

dx;
df’; — fo(z;) = —aVKL

This leads to an iterative scheme

7
until

|VKL‘ § EKL



The flow field in a Particle Flow Filter/Smoother

 The flow field is found as

~  kernel grad posterior pdf
fs(x) = — SJK(x )V i logp(a®|y) H V. K (2", x)

attracting term repelling term

* The attracting term pulls the particles towards the posterior mode
* The repelling term ensures coverage of the posterior pdf
* We use a matrix-valued kernel as in Hu and Van Leeuwen (QJRMS, 2021)



Particle Flow Filter on a high dimensional ocean model

 2-layer Quasi-geostrophic model of the Antacrtic Circumpolar Current,
526,850 gridpoints

 Assimilation of upper-layer variables once a day, of every 5t gridpoint,
9600 observations

. H(:z:) — $2 , Observation error 5 cm”2,
* 50 particles, initialized from samples from long model run

Example of SSH field (m), 200+ ® ® ;;
grid spacing 5 km, 150 ' @ . . ' ‘ . 00
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Update mean SSH field (m)

Note:

1)

2)

The observation
operator is SSH
squared !

The large difference
between prior and
true field.

The close
resemblance
between posterior
and true fields.
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Update mean streamfunction lower layer (m?s)

Note:

1)

2)

3)

This layer is not
observed

The large difference
between prior and
true field.

The close
resemblance
between posterior
and true fields.
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Example of histogram for H(x) = x*2, at one grid point
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Example of histogram for H(x) = x*2, at one grid point

Probability p(x)
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Example of Particle Flow Smoother on Lorenz 1996 model

dx )
dt

1000 dimensional

= (Tig1 — Ti—2)Tim1 —x; + F

e Assimilation window 10 time steps of time step 0.02

* Initial state error 1.0

* Observation every other gridpoint at end of assimilation window
* H(z) = |z

* Observation error 0.1

* 50 particles

 Comparison with perturbed-observation ensemble of 4DVars



Convergence of Particle Flow Smoother
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Histograms comparison with Ensemble of 4DVars
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Example pdfs at final time for different grid points
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These will be used for
forecasts!



Conclusions

Fully nonlinear data-assimilation methods exist and are slowly becoming mainstream.

Standard Particle Filers are extremely flexible and easy to implement, but suffer from
weight degeneracy

Localization in particle filters is maturing, but weight collapse in local areas remains a
problem

Particle Flow filters (and smoothers) are not degenerate by construction.
Very promising in high-dimensional applications

Cost equivalent to ensemble of 3DVars (filter) or strong-constraint 4DVars (smoother).
Working on implementation in DART (filter) and JEDI (smoother).

Much need for more scientists working in. nonlinear DA!



