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Problem of machine learning

2 0 2 4 6
10

5

0

5

10

15

20

Input data Output data

Extracted Information

*Assimilated trajectories
*Dynamical models

Learning

*Clusters

Machine

*Regression model yn = f (xn)



Problem of machine learning

I Data tells a story
I Information or “gist” of story extracted
I Extracted information is used to re–tell the story
I Errors in re–telling may be used to revise extracted information

Ultimate Goal:
Be able to predict behaviour of unseen data, or “how does the story
continue”.

Examples of machine learning problems:

I Time series models
I Data assimilation
I Unsupervised learning
I Regression and classification
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Examples for unsupervised learning methods
. . . apply to data set D = {xn ∈ F , n = 1, 2, . . .}, where F is
potentially very high dimensional.

Clustering Group data into rep-
resentative “clusters”. Cluster
centres represent points in the
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Principal Component Analysis
Find principal axes of mini-
mal ellipsoid encompassing the
data. Then chose subspace
spanned by axes with large pro-
jection, delete remaining axes.
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General framework for unsupervised learning methods

Given data points x1, x2, . . . in “large” (or high dimensional) space
F , find a “small” (or low dimensional) subset F0 ⊂ F and a map

f : F → F0 ⊂ F

which “approximates the identity”, i.e.

rN =
N∑

n=1

d(xn, f (xn))

is small (and d is an appropriate measure of distance).

Trade–Off
A larger F0 gives a smaller error rN , but implies a higher complexity
of f .
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Examples for regression and classification

Classification: Identify all pictures with cats (or tumors, or . . . )

Regression: Identify functional relationship
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The main ingredients of regression
and classification

I Two spaces F ,G with feature space F potentially very large
and target space G very small (i.e. R or finite set);

I a training data set T of feature value pairs
(xn, yn), n = 1, . . . ,N with features xn ∈ F and targets
yn ∈ G ;

I a model class F of functions f : F → G ;
I a loss function L : G × G → R≥0 with the property that

L(y , y) = 0 for all y ∈ G ;
I a measure of complexity κ : F → R≥0

The value L(y , f (x)) measures the error of the function f ∈ F in
mapping the feature x onto the target y .
The value κ(f ) measures the “complexity” (i.e. irregularity, number
of parameters) of the function f ∈ F .
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The loss minimisation principle
Better: structural loss minimisation principle

Aim:
Find functional relationship f ∈ F between features and targets.

Loss minimisation principle:
Find fT ∈ F by minimising training error

ET :=
1
N

N∑
n=1

L(yn, f (xn))

over f ∈ F , subject to a constraint κ(f ) ≤ c .
Note: fT depends on the training set T and also on c .
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Assessing performance

General Assumption:

I Feature–target pairs {(xn, yn), n = 1, 2, . . .} are independent
and identically distributed random variables

I yn = g(xn) + rn with rn “noise”
I L(y , ŷ) = (y − ŷ)2 “Quadratic loss”

Test error:
is defined as

etest := E(y − fT (x))2

where E is over T and a feature–target pair not in T .
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Bias–variance decomposition

Let f̄ (ξ) = E(fT (ξ)) the “average model” for each ξ ∈ F .
Remember y = g(x) + r .

etest = Er2︸︷︷︸
noise

+E(g(x)− f̄ (x))2︸ ︷︷ ︸
bias

+E(fT (x)− f̄ (x))2︸ ︷︷ ︸
variance
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Bias variance trade–off and model complexity
Demonstration later in context of linear models

Typical Bias–Variance Tradeoff
Bias decreases with k .
Variance increases with k .
Test error exhibits mini-
mum.
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or
I The complexity κ controls the trade–off.
I How do we estimate an appropriate value for κ?
I The training error ET is a bad estimator for the test error etest

(typically becomes better with κ due to overfitting).
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Why are training and test error different?
Demonstration later in context of linear models

The training error ET is a bad estimator for the test error etest.

etest = E(y − fT (x))2 (x, y) independent from T ,

ET =
1
N

N∑
n=1

(yn − fT (xn))2

∼= E(y − fT (x))2 (x, y) contained in T .
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Estimating the test error
Demonstration later in context of linear models

We find a bias–variance decomposition for the training error. But
there will be another term!
Remember: (xn, yn) ∈ T . Then

ET
∼= E(yn − fT (xn))2

= E(yn − f̄ (xn))2 bias

+ E(f̄ (xn)− fT (xn))2 variance
− 2E(yn − f̄ (xn))(fT (xn)− f̄ (xn))

= etest − 2E(yn − E(yn|xn))(fT (xn)− f̄ (xn))︸ ︷︷ ︸
♠

The term ♠ is the correlation between yn and fT (xn) at fixed xn,
averaged over xn.
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The linear model

I T = {(xn, yn), n = 1, . . . ,N} with xn ∈ Rd and yn ∈ R (d
potentially very large);

I model class F = {f (x) = βtx, β ∈ Rd}
I loss function L(y , ŷ) = (y − ŷ)2

I measure of complexity κ(β) = |β|2.

A few remarks
I the models are linear in the parameters, but can be nonlinear

in the features; to treat models of the form f (x) = βtφ(x) just
introduce new features z = φ(x);

I Rather than minimising training error under constraint, we
may minimise

RT :=
1
N

N∑
n=1

(yn − βtxn)2 + λ|β|2
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The linear model
continued

Convenient to introduce notation

X :=

xt1
...

xtN

 Y :=

y1
...
yN


Then fitted parameters can be written as

β = (XtX + Nλ)−1XtY .

We define the fitted outputs ŷn = βtxn and

Ŷ :=

 ŷ1
...
ŷN

 = Xβ = X(XtX + Nλ)−1XtY = HY

with hat matrix H (it puts the hat on the y ’s).
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Estimating the test error for the linear model

Assumption for estimating test error:
β = (XtX + Nλ)−1XtY .

ET
∼= etest − 2E(yn − E(yn|xn))(fT (xn)− f̄ (xn))︸ ︷︷ ︸

♠

with

♠ = E(yn − E(yn|xn))(fT (xn)− f̄ (xn)) =
1
N
Er2

n E tr(H)
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