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The 1deal solution

Consider the following 1-step scenario:
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The reality

Variational: Mode
Maximum a posteriori estimate

Kalman-based: (Ensemble) mean and covariance
Minimum variance estimation

Actually this is exact (and the same) when:
- Forecast model and observational operator are linear.
- Errors are Gaussian.



Filters

Assimilate every time observations are available.
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Smoother

Assimilate observations over a time window.
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Characteristics of traditional DA methods

Method Observations Covariance
Variational | Kalman || Sequential | Smoother || Static | Dynamic
3DVar v v Ve
4DVar v v (V') v
Optimal Interpolation v v v
Kalman Filters v v v
Kalman Smoother v v v
Solution is got
using (iterative) : :
minimisation ::J;ncs?gtea;lendty IS
techniques. Solution is got fixed in time.
using explicit
linear algebra. Estimation is Estimation is

done for an

instant.

done within a

time window.

Uncertainty
evolves in time.




Why do we need hybrid methods?



The role of the covariance matrix.
Filtering example
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Let’s write the explicit solution for this problem.
Analysis equations
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Elements of the filtering solution
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The solution
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Do the covariance as an exercise




4DVar has important
Information from the
future (after all, it is a
smoother), 3DVar does
not.

The figure shows a
comparison of the
performance of the two
methods. Taken from
Evans et al, 2005.

3D vs 4DVar
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DA cycle and observations: 8A7, R=2*1
4D-Var assimilation window: 24At
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How long should the assimilation window be?

The longer the 4D assimilation window the more observations
we’ll have... but also the more nonlinear the forecast will be.
The best should be somewhere in the middle.

Win=8 | 16 24 32 40 48 o6 64 72

> Fixedwindow | 059 | 059 | 047 | 043 | 062 | 095 096 | 091 | 098

Start with
short window

059 | 051 | 047 | 043 | 042 | 0.39 044 | 038 | 043

Performance of 4DVar using I
the Lorenz 1963 and different ]
lengths of assimilation window \/\ /
(Kalnay et al., 2007). Smine \Jﬁl ]
| A 0 L, e
It is recommendable to do the / a1
minimization progressively while ————F——F—
Increasing the assimilation g —

window (Pires et al., 1996). — ted
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Sampling
There Is always sampling noise in the estimators, this
reduces as the ensemble size increases.

Example with a univariate Gaussian distribution.

Effect of sample size in the estimation of the mean, p=10
300 samples considered
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Sampling

Two effects of finite sample size:
- Underestimation of sample covariance.
- Spurious long-range correlations.

Fixes:
- Covariance inflation
- Covariance localization

Also, the sample covariance matrix is singular for N>M...

How many members would we need? At least as many as
the number of unstable directions of error growth?



Sampling

obﬁfreq:lﬂ, density:xyz, err var:2, M=100, method=SEnKF, rho=0.01 ob freq:10, density:xyz, err var:2, M=10, method=SEnKF, rho=0.01
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RMSE

Covariance inflation and
performance.

Lorenz 1963 H=LR =21.M =3

analysis RMSE (averaged over 10° analysis cycles)
frequent cbservations
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Covariance localization

* When forecast error covariance is mispecified (e.g., due
to neglecting model error, or when M << N), it may include
spurious correlations between very distant grid points.

* A common solution is to multiply each Pb element by an
appropriate weight that reduces long-distance
correlations.

* This ensures that only the components of Pb believed to
represent the corresponding components of Pb accurately
are retained.
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observations

L ocalization

Example using Lorenz 1996

Cut-off

Localization Matrix
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observations

L ocalization c-(p'a’)

Example using Lorenz 1996, observing every other variable.

Cut off Gaspari-Cohn

Localization Matrix Localization Matrix
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|s the correlation real of an artifact?
Miyoshi (2014)
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Ensemble-based autocorrelations from the yellow star point (50.099 N, 168.75 W) at 00:00 UTC 17 January with (left
column) 20 members and (right column) 10,240 members for (row 1) zonal wind component (U), (row 2) meridional
wind component (V), (row 3) temperature (T), (row 4) specific humidity (Q), and (row 5) surface pressure (Ps). Except
for Ps, the fourth model level (sigma =0.51, or approximately 500 hPa level) is shown.



|s the correlation real of an artifact?
Miyoshi (2014)

(a) 20 members w/o localization (b) 20 members w/ 700-km localization
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Similar to Figure 1 but at 00:00 UTC 18 January with the yellow star point at 46.389°N, 176.25°W and for different
ensemble sizes ((a) 20, (c) 80, (d) 320, (e) 1280, and (f) 10,240 members) and (b) with localization for 20 members.


https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GL060863#grl51908-fig-0001

Is the correlation real of an artifact?
Miyoshi (2014)

(a) 160 members w/o localization (b) 160 members w/ 700-km localization
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(d) 160 members w/ elliptic localization

Similar to Figure 4 but for 160 members (a) without localization, (b) with 700 km circular localization, (c) flow-adaptive
localization ellipse identified subjectively (black dashed), and (d) with elliptic localization based in Figure 5c.

Lesson: the dynamical situation may be important for localisation!


https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GL060863#grl51908-fig-0004
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GL060863#grl51908-fig-0005

Example: Korteweg-DeVries model

ou | O | 3 0
- I 1 i — p—
Ot ds 083

* Has soliton solutions, so solutions that don’t change
shape over time.

* We run it on a periodic domain and study how a
covariance matrix is evolved by this system.

Amezcua et al, 2017.



Example
propagation
of soliton

with KdV
equation.
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Amezcua et al, 2017.



Propagation of B with KdV model
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Amezcua et al, 2017.



Propagation of B with KdV model
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Combined effects of inflation and localization

Experiments with Lorenz 1996 and 40 variables, observing
every 2 time steps and every other variable.
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Interactions of different parameters in the EnKF
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Combining the best of 2 worlds?

A static covariance is full An ensemble

rank, it is invertible, it covariance has

gives idea of the information of the flow,

climatology. but it can be singular
and contains sampling
errors.

% =
Climatology Flow/State
Dependence
B=ceB,__+{1-aB, > Compromise?

There are several ways to implement this.
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