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Quick quiz!
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• The ensemble Kalman Filter theory assumes that the ensemble is large enough to give an accurate 
estimate of the sample mean and covariance, !𝐱 and 𝐏.

• Even for a two variable model a large sample size is needed to accurately estimate the mean and 
covariance:

Example:
True distribution
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Consequences of under sampling in EnKF

There are numerous consequences to under sampling in the EnKF

1. There may be a bias in the ensemble mean.
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Consequences of under sampling in EnKF

2. The forecast ensemble spread, which defines 𝐏! , will be subject to sampling error (illustrated by 
the 2d example)

• Recall

𝐱"
# ,% = 𝐱"

# ,! + 𝐏"! 𝐇& 𝐇𝐏"! 𝐇& + 𝐑
'(
(𝒚" + 𝛜)

(𝒊) − 𝐇𝐱"
# ,!)

• If the spread (𝐏"! ) is too large the analysis ensemble will over fit to the observations.
• If the spread (𝐏"! ) is too small, the ensemble will under fit to the observations. If the 

ensemble repeatedly underestimates the forecast error and the information in the 
observations is ignored, then it is difficult to regain spread in the ensemble. This is called 
‘filter divergence’.  
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A system without sampling error can 
correctly follow the observations within 
their error.
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Illustration of sampling error leading to 
filter divergence

1.

1. Sample estimate of prior spread is too small

2.

2. Too much confidence in the prior means the analysis underfits 
the observations and the posterior spread is too small

3..

3. Overconfident posterior leads to an overconfident prior at the next 
assimilation time, which is exasperated further by under sampling.

4.
4. On each cycle the overconfidence is propagated and worsened 
until there is no spread in the prior and the analysis is no longer 
able to use the information in the observations.



Consequences of under sampling in EnKF

3. The correlation will be subject to sampling error. Implying that observations can influence 
regions and variables that they shouldn’t.
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Consequences of under sampling in EnKF

4. 𝐏"! is rank deficient

The analysis increments are in the sub-space spanned by the forecast ensemble
• The analysis increments are given by

𝐱"
# ,% − 𝐱"

# ,! = 𝐏"! 𝐇& 𝐇𝐏"! 𝐇& + 𝐑
'(
(𝒚" + 𝛜)

(𝒊) − 𝐇𝐱"
# ,!)

• The analysis increments are therefore a linear combination of the  forecast error 
perturbations.

• Therefore, even if the observations indicate otherwise, the analysis is restricted to space 
spanned by the ensemble which has at the most a dimension of N-1.
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Possible solutions

1. Use more ensemble members (see Miyoshi et al. 2014)

2. Re-centre the ensemble around a deterministic analysis e.g., from 4DVar.
• Addresses problem of bias in the ensemble mean

3. Ensemble inflation
• Addresses problem of filter divergence

4. Localization
• Addresses problem of spurious correlations
• Splits problem into quasi-independent problems, increasing the rank of forecast 

perturbation matrix.

5. Combine ensemble with variational approaches (see tomorrow’s lectures)
• These are known as hybrid methods
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Focus of this 
lecture



Ensemble inflation
Ways to inflate

• Additive inflation (Mitchell and Houtekamer, 2000; Corazza et al., 2003) 
• At each model time step add a random perturbation using similar ideas to representing 

model error given in the last lecture
𝐱"
# = 𝑀-!"#→-!(𝐱"'(

# ) + 𝛈"
(#), where 𝛈 ∼ 𝑁(𝟎, 𝐐)

• Multiplicative inflation (Anderson and Anderson, 1999) 
𝐏/012%345
! = 1 + 𝜌 6𝐏!, 𝜌 > 0

• Relaxation to prior ensemble (Zhang et al., 2004; Whitaker and Hamill, 2012) 
• Only accept part of the spread reduction proposed by

𝐏"% = (𝐈 − 𝐊"H) 𝐏"!

• Two methods: relaxation to prior perturbation and relaxation to prior spread
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Tuning the inflation factor – validation of 
ensemble spread
Method 1: rank histograms (Hamill, T., 2001):

• For the ensemble to be reliable it is assumed that it is sampling the same distribution as the 
truth. 

• A rank histogram is constructed by considering a point in space that is well observed.
• The values of the ensemble members at that point are ranked from highest to lowest creating 

N-1 bins.
• Then each observation is binned to give a frequency diagram.

Interpretation:

• Concave shape- the ensemble is under spread
• Convex shaped- the ensemble is overspread

• Flat- the ensemble is correctly spread

• Asymmetric- the ensemble is biased
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Method 2: Covariance matching

• This checks that the sum of the spread in the background ensemble and observation error 
variance match with the variance of the innovations (e.g. Houtekamer et al. 2005).

𝐸 𝒚 − 𝐇𝐱! 𝒚 − 𝐇𝐱!
𝐓
≈ 𝐑 + 𝐇𝐏! 𝐇&
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Tuning the inflation factor – validation of 
ensemble spread

The idea of covariance matching 
has led to various schemes for 
adaptive covariance inflation 
e.g. Kotsuki et al. 2017



Localisation

The aim of localisation is to restrict the influence of observations to just a physically realistic region.

Two ways of doing this are:
• Pf-localisation

• R-localisation
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• This modifies the forecast 
error covariance matrix to 
reduce long-range 
correlations.

• This restricts observations 
which are allowed to 
influence each grid point.



• In practice cannot act on Pf directly
𝐊 = 𝛒 ∘ (𝐏! 𝐇&) 𝛒 ∘ (𝐇𝐏! 𝐇&) + 𝐑

'(

• Need to choose function 𝛒 and length scales, this may be state-dependent
• Not clear how to define distance between observations which have no clearly defined 

location in space, e.g. satellite observations
• Not clear how to deal with multivariate covariances
• Can affect the balance e.g. to conserve geostrophic balance length scale O(1000)km must be 

used in the horizontal

Pf- localization (Houtekamer and Mitchell, 2001)
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R-localization (Hunt et al. 2007)

• Localisation is performed by gradually increasing the observation error variances using the 
positive exponential function:

where
• d(i,j,) is the distance between observation i and model grid point j.
• L is the localisation lengthscale.

• This is the method used by the LETKF
• The optimal lengthscale for R-localisation is found to be 

shorter than for Pf-localisation (Greybush, 2011). 
• Using the optimal lengthscales, R-localisation and Pf-

localisation have comparable performance in terms of 
analysis rmse and balance.
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Hybrid methods

Hybrid methods combine the best parts of the EnKF (flow-dependent Pf) with the best parts of 
variational methods (full rank B).

The earliest hybrid method was proposed by Hamil and Snyder (2004), in which the representation 
of the error covariance of the prior information is a weigthed combination of the flow-dependent 
estimate from the EnKF, Pf, and the full rank estimate used in variational methods Ps

where β is a tunable parameter.

Note localisation and inflation of the ensemble are still necessary.
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Summary

• Ensemble data assimilation relies on a sample estimate of the mean and covariance of forecast 
distribution. This allows it to provide a flow-dependent estimate of the forecast uncertainty.

• If the ensemble size is much smaller than the size of the state then sampling error becomes an 
issue
• Rank deficiency
• Analysis increments lie in the subspace of the ensemble
• Filter divergence
• Spurious correlations

• To make ensemble DA practical need
• Ensemble inflation
• Localisation
• …Hybrid methods
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