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Aim

The aim of this talk is to give you a tour of some of the issues
associated with implementing data assimilation schemes. Details
can be followed up in questions or in discussions tomorrow.

You don’t have to deal with all these issues before building a data
assimilation scheme, but it is a good idea to have them in mind.
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3D-Var and 4D-Var

In variational data assimilation we must minimize cost functions of
the form

Three-dimensional variational data assimilation (3D-Var)

J (x) = (x− xb)TB−1(x− xb) + (y −H(x))TR−1(y −H(x))

Four-dimensional variational data assimilation (4D-Var)

J (x0) = (x0−xb)TB−1(x0−xb)+
n∑

i=0

(yi−H(xi ))TR−1
i (yi−H(xi ))
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Minimization and convergence

In order to minimize the cost function we need to consider

1 Minimization algorithm

2 Stopping criterion

3 Gradient calculation

4 Preconditioning

We treat each of these in turn.
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Descent algorithms

There are many different minimization algorithms. The most
practical to use are those that require only the first derivative of
the cost function, such as quasi-Newton or conjugate gradient.

Numerical optimization is a huge field and so it is much better to
take a package written by somebody else than to code your own
minimization routine.
Do not try to write your own!
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For routines in Fortran or C++ see the Guide to Available
Mathematical Software
http://gams.nist.gov/
(look under unconstrained minimization)

For routines in Matlab a good place to start is the Stanford
site
http://www.stanford.edu/group/SOL/software.html
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Stopping the minimization

The iterative process is stopped when some stopping criterion or
termination criterion is satisfied. Common criteria are to test when
one or more of the following is less than a given tolerance

Change in function between two iterates

|J (x(k+1))− J (x(k))| < tol

Change in value of state

||x(k+1) − x(k)|| < tol

The norm of the gradient

||∇J (x(k))|| < tol

The ratio between the norm of the gradient at the current
iterate and its initial value

||∇J (x(k))||/||∇J (x(0))|| < tol
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Note that we cannot satisfy these to the same tolerance. If we
satisfy the change in function to accuracy ε then the change in
state will be of the order

√
ε and the gradient will be of order ε1/3.

Note also that the tolerance we can achieve will depend on the
noise on our inputs.
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Gradient calculation

In order to calculate the gradient of the cost function we usually
require the adjoint of the observation operators (and of the model
in 4D-Var).
To form these we usually use the method of deriving the adjoint
model from the nonlinear model source code (automatic
differentiation).
It is very important to test the gradient calculation. If the gradient
code is wrong the minimization will not converge!
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Conditioning

When using an iterative method the speed of convergence and
accuracy of the solution after a given time is dependent on the
condition number of the problem.

Preconditioning is a technique to reduce the condition number of
the problem first.
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Preconditioning by variable transformation

Consider again the 3D-Var cost function

J (x) = (x− xb)TB−1(x− xb) + (y −H(x))TR−1(y −H(x))

The matrix B is badly conditioned. If we define uncorrelated
variables v such that

v = B−1/2(x− xb)

then we have

Ĵ (v) = vTv + (y −H(B1/2v + xb))TR−1(y −H(B1/2v + xb))

which is better conditioned.
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Other preconditioning

Other preconditioning is possible and relies on using knowledge of
the Hessian of the cost function.
For example, ECMWF use a Lanczos algorithm to minimize the
cost function and save the leading eigenvectors to precondition the
next assimilation.
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Factors affecting conditioning

The conditioning of the problem has been shown to be worse for

certain correlation matrices (e.g. Gaussian);

large correlation length scales in the B matrix;

closely spaced observations;

more accurate observations.

(Haben, Lawless and Nichols, 2011)
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Choice of prior constraint

So far we have assumed a prior constraint of the form

(x− xb)TB−1(x− xb)

We have several choices for the implementation of this term:

Variable transformation to model B.

Choice of spatial correlation function e.g. Gaussian, SOAR,
Laplacian (for B−1).

What is xb for your problem?
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Spatial correlation functions

The spatial correlation functions in the prior constraint require the
specification of variances and length scales for each variable. These
must be estimated from knowledge of your prior.

If the prior xb is a short term forecast, then two common methods
are

Generate statistics from a large sample of forecast differences.

Generate statistics from an ensemble assimilation.
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Other constraints

Other constraints may be added to the cost function. These may
be

strong constraints, which have to be exactly satisfied.

weak constraints, which may be only approximately satsfied.
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Examples

1 Spatial smoothing term - Penalise second derivative of field,
e.g.

α||∇2x0||

2 Digital filter constraint - Penalise distance to filtered solution,
e.g.

α

n∑
i=0

(xi − xf
i )T (xi − xf

i )

3 In a standard 4D-Var the model is imposed as a strong
constraint, i.e. the states must satisfy the model equations.

4 In weak constraint 4D-Var we add a term to the cost function
of the form

(xi+1 −M(xi ))TQ−1(xi+1 −M(xi ))
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Observation errors

Recall the 3DVar cost function

J (x) = (x− xb)TB−1(x− xb) + (y −H(x))TR−1(y −H(x))

How do we represent the observation error covariance matrix R?
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Observation error covariance matrix

The observation error covariance matrix represents several different
sources of error

1 Instrument errors

2 Observation preprocessing errors

3 Forward model errors

4 Representativity errors

In practice these are not always considered separately.
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Instrument errors

Any measuring instrument will only measure to a certain accuracy.
The known accuracy of the instrument (variance) must be included
in the R matrix.

A.S. Lawless Implementation of var



Variational data assimilation Minimization and convergence Additional constraints Observation errors References

Observation preprocessing errors

Sometimes we assimilate observations that have been preprocessed
in some way. For example, we may process a satellite radiance
measurement to obtain a derived quantity, such as temperature,
and then assimilate that. This introduces extra errors into the
measurement.
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Forward model errors

In order to compare an observation with the model forecast we use
the observation operator H. In theory the matrix R should account
for errors in this operator.
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Representativity errors

Representativity errors are errors that arise when observations can
resolve scales that the model cannot.
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Observation error correlations

The off-diagonal elements of the R matrix represent correlations
between observation errors. These arise due to the errors discussed
previously. How can we specify these?
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Observation error correlations

Common methods for dealing with observation error correlations
are

Thin the data and assume R is diagonal (especially used with
satellite data).

Assume R is diagonal but increase the variance to allow for
the fact that it is not.

Use of a Markov matrix. This has a tridiagonal inverse in 1D
and so makes R−1 easy to represent.

By the leading eigenvectors of the matrix.

(Stewart, 2010, PhD thesis)
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