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Introduction

xb
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The general aim of data assimilation is to improve a forecast by reducing the 

error in the initial conditions.

Observations, y, and a-priori data, xb, are combined utilising a statistical 

description of their respective errors and a description of the relationship 

between state and observation space, h(x), to give an analysis of the current 

state, xa.

A 1D Gaussian example:

xb:background
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The general aim of data assimilation is to improve a forecast by reducing the 

error in the initial conditions.

Observations, y, and a-priori data, xb, are combined utilising a statistical 

description of their respective errors and a description of the relationship 

between state and observation space, h(x), to give an analysis of the current 

state, xa.

A 1D Gaussian example:

xb:background, y:observation
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error in the initial conditions.

Observations, y, and a-priori data, xb, are combined utilising a statistical 
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xa:analysis, xb:background, y:observation, σb:background error st dev, σy:ob error st dev, K:Kalman gain



Introduction

In the geosciences, observations tend to be very expensive and so it is 

important to monitor the impact they have in a data assimilation system. 

A measure of the impact of the observations may be used for... 

•the assessment of the data assimilation scheme

•the design of new observing systems

•defining targeted observations

•data thinning
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Influence matrix

The influence matrix measures the 

sensitivity of the analysis in 

observation space to the 

observations (Cardinali et al., 2004, 

QJRMetSoc).
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This is a pxp matrix, where p is the number of observations. 

When R is diagonal the diagonal elements of S are bounded by 0 and 1. 

Allows the most influential observations or group of observations to be 

identified.
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H:linearised ob operator, R:ob error covariances, B:background error covariances, Pa:analysis error covariances
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Influence matrix- Lorenz ’63 example
• x=(x,y,z)T and y consists of observations of x made at every 4th time step.

• B= , where σb
2 and σy

2 (the observation error variance, identical at 
each time) are both equal to 1.
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S: solid (dashed) contours give 

positive (negative) values
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Degrees of Freedom for signal
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The degrees of freedom for signal 

quantifies the amount of information 

coming from the observations as 

opposed to the background (e.g. 

Rodgers, 2000).

It can be quantified as
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Mutual Information
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Mutual information quantifies the 

amount of information introduced by 

the observations. It is defined as the 

change in entropy between the prior 

and the posterior (e.g. Rodgers, 

2000; Eyre, 1990, QJRMetSoc).

Entropy is a measure of the 

uncertainty and so for a Gaussian 

error distribution is simply related to 

error variance.
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Comparison of ds and MI - 1D example

Both ds and MI can be expressed as the ration of the observation error 

standard deviation to the background error standard deviation r.
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Comparison of ds and MI - 2D example

Let                               and                             . H=I2

Then                                        and
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Relative Entropy
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Relative entropy is a non-symmetric 

measure of the difference between 

the prior and posterior (Xu, 2006, 

Tellus).

Unlike the other measures relative 

entropy is sensitive not only to the 

change in the covariances but also 

the change in the mean.
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Relative Entropy
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From the definition of ds it is clear that RE averaged over all observation is 

simply MI.

n:size of state space
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Comparison of the four measures

•The influence matrix gives a full pxp matrix whereas ds and MI give a single 

value summary of this matrix.

•Only RE is sensitive to the value of the observation in addition to its error 

variance relative to that of the background.

•It is possible to show that MI, unlike ds, is additive with successive 

observations.

•RE averaged over all possible observations gives MI.

•MI is conserved for a linear change of coordinates.

•RE is conserved under a general non-linear change of coordinates. 

•A study of how RE, MI and ds depend upon model error is given in Xu et al., 

2009, Tellus.



Introduction            Influence matrix            DoFs            Mutual information            Relative entropy           Impact on the forecast

Observation impact on the forecast

A measure of the observations impact on the analysis implicitly gives 

information about their impact on the forecast (Liu et al., 2009, QJRMetSoc).

However if you wish to compare different observations then it is important to 

take in to account their different dynamical roles.

I shall briefly introduce the following methods:

•OSSEs and data denial experiments

•Adjoint techniques

•Flow of entropy
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OSSEs and data denial experiments

OSSEs (observation system simulation experiments) (e.g. Arnold and Dey 

(1986), Atlas (1997), Masutani et al. (2010)) and data denial experiments 

(e.g. Bouttier and Kelly (2001), Kelly et al. (2007)) compare a control 

forecast to a forecast which has had additional (simulated) observations 

assimilated or fewer observations assimilated.

The difference between these forecasts gives an indication of the impact of 

the observations on a variety of measures.

Caution is needed in careful validation and calibration when large amounts 

of data are added or removed from a system which may have been 

optimally tuned for the original set of observations (Gelaro and Zhu (2009)).

It is also very expensive and so only impact of a large subset of 

observations can be looked at one time.
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Adjoint techniques

The adjoint technique as proposed by Langland and Baker (2004) 

approximates the sensitivity of a scalar forecast error norm to the 

observations.

The error norm is given by ||xf − xt||C, where xf is the forecast resulting from 

the assimilation of observations and xt is a verifying analysis (which must be 

chosen carefully). C is a matrix of energy weighting coefficients that 

represents dry total energy (Rabier et al. (1996)).

Like the influence matrix this approach allows the impact of individual 

observations or subsets of observations to be computed simultaneously 

making it advantageous over the data denial experiments. 

Subject to accuracy of linearised model- so can only look at the sensitivity of 

a short-term forecast.

A comparison of the adjoint and data denial techniques is performed by 

Gelaro and Zhu (2009) and Cardinali (2009) .
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Flow of entropy (the evolution of uncertainty)

Calculate how the entropy at the forecast time depends on the uncertainty in 

the initial conditions (which we know from MI depends upon the 

observations).

For linear systems the evolved posterior remains Gaussian.

For non-linear systems could use a particle filter to evolve the posterior to 

the forecast time without any assumptions about the linearity of the model –

only possible for small dimensions!

e.g. Time lagged mutual information (e.g. Kleeman, 2011, Entropy)

( ( )) ( ( ) | ( ))f f iTLMI H x t H x t x t 

tf: forecast time, ti: inital time
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