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Numerical weather prediction

• The mass conservation equation, the momentum

equation, the energy equation, the concentration

equation for humidity and the equation of state

give expressions for the rates of change of x(r,t)

= (v, T, p, ρ, q)

• all the properties of the system can in principle

be calculated from nonlinear partial differential

equations (PDE’s) and boundary and

initial conditions.
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Predictability

• Consider two initial atmospheric states    and    

which differ by an infinitesimally small quantity 

(or “error”) 

• A initial difference (or “error”) between two 

solutions (or “analogs”) to the equations for the 

evolution of the (atmospheric) state may grow 

with time
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xt0
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xt1=M(xt0)

xt1=M(xt0)=M(xt0)+M(xt0)ε
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The need for data assimilation
• Weather and climate forecasts are uncertain due 

to uncertainty in
– Initial and boundary conditions

– Models (e.g., hydrostatic assumption or shallow water 
approximation; discretization)

– Parameters (e.g., CO2 sources and sinks)

• Not only we need accurate models but also good 
knowledge of initial (and boundary) conditions

• It is essential that good quality, widespread and 
frequent measurements (e.g., from satellites) 
are assimilated in NWP models in order to 

achieve good quality forecasts
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Data coverage at ECMWF
surface stations buoys

aircraft radiosondes
Courtesy ECMWF
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The global satellite operational
observing system
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Data coverage at ECMWF
Infrared AMVs Microwave imagers

IASI Bending angle
Courtesy ECMWF
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Observation model

• Discrete stochastic observation model

• Where we assume: 

• E{k}=0 for all k

• E{x0k
T} = 0

• E{khj
T} = 0
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Observational issues

• Bias monitoring

• Quality control

obs rejected when 

• Correlated observation error

Whithening filter: 
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HIRS channel 5 on NOAA-14 satellite HIRS channel 5 on NOAA-16 satellite

cov( ) T

b  y Hx R HBH

Courtesy Dick Dee ECMWF
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Stochastic-dynamic model

• In the presence of model error      the dynamical 
system is described by

• Where x0 random with E{x0} = m0 and E{(x0 -
m0)(x0 - m0

)T} = P0

• We assume (simplifying assumptions!):

• E{hk} = 0 for all k and 

• Model error uncorrelated with the initial state: 

E{hk x0
T} = 0 

• This means xk is random with probability density 
p(xk)

• xk (or, equivalently, p(xk)) is to be determined
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The data assimilation problem

• Consider a set of realizations of observations

• When k≤l (i.e., for tk≤tl), the conditional

probability density p(xk|Yl) provides the solution

of the data assimilation (or filtering) problem

• From p(xk|Yl) we could calculate E{xk|Yl} (the

estimate of xk at time tk or analysis) and the

covariance matrix

{ 1 2Y , , ,l l y y y
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Data assimilation for NWP

• Is data assimilation (or probabilistic forecasting) a 

solved problem?? Certainly not for NWP 

applications!

• If we sample the probability to find a random 

variable between 0 and 1 with a 0.01 resolution, 

we need 101 sample points (say 100 for simplicity)

• How many sample points do we need to map the 

probability space in the case of a random vector 

with 7 components? (think of x(r,t) = (v, T, p, ρ, 

q))
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The “curse of dimensionality”
• We need, you guessed it, 1007 = 1014 sample 

points. And to store such a number on a 
computer we need a hundred terabyte’s memory 
space, for each grid point! This is a lot of hard-

disks…

• Note that the current Met Office operational 
global NWP model considers 1024 x 769 grid 

points over 70 vertical levels (~55 million grid 
points) at a given time!

• This means that, by today standards, it is not 
possible to sample the pdf of the state vector 
used in NWP
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The Kalman filter
• The good news is: under certain conditions we may 

not need to keep track of the whole joint state pdf

• If all relevant errors (i.e., model, initial conditions 

and observations errors) are Gaussian, their pdfs are 

completely known if their means and covariances are 

known

• When the model and the observation operator are 

linear, an optimal estimate of the mean and the 

covariance of p(xk|Yl) are given by the Kalman filter, 

that is the solution of the data assimilation problem.

• In the presence of (moderate) nonlinearities (typical 

case in NWP): extended Kalman filter
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The extended Kalman filter 
• Let now consider the nonlinear case with 

Gaussian errors

• Forecast step

• Data assimilation step
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Example: scalar and linear case

• Updating at tk+1 prior information valid at tk with yk+1
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Evolution of the pdf (with update)

a = 1.2
x0 = 5
0

f)2 = 0.5
(2

h)0 = 0.1
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Evolution of the pdf: cycling
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• To compute (not just store) the covariance matrix 

update    , it can be shown that we need ~ n3

Flops (n~107 at the Met Office), i.e. 1021 Flops 

(floating-point operations)

• The IBM supercomputer at ECMWF has a maximal 

achieved performance of ~100 TFlops / second   

~1014 Flops / s. We need ~107 s to compute     , 

that is about five months!

• Clearly, we need to resort to some approximations 

and/or alternative strategies

Use of Kalman filters in NWP
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Data assimilation techniques for NWP

• The most widespread data assimilation approach 
used for NWP is based on variational techniques

• 4D-Var calculates the optimal model trajectory 
over a given time window (typically 6h or 12h) 

by taking into account observations taken within 
the same window and some prior information.

• In the linear case, it is equivalent to a Kalman 

smoother initialized with the same prior 
information used in 4D-Var

• We now discuss an approximation of the Kalman 
filter based on a set of ensemble members (i.e., 
based on Monte Carlo techniques) 
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Ensemble methods

• Consider a random variable x distributed 
according f(x), with unknown mean m and 

variance 2

• From f(x) we can generate a ensemble of N 
independent realizations of x: x1, x2, …, xn.

• We can estimate m and 2 via the sample (or 
ensemble) mean    and sample variance s:

• They are both unbiased estimators and their 

variance is
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• Gray dots: mean values of N ensemble members drawn from a Gaussian with zero 

mean and unit variance, for a total of 100 mean values for each N value

• asterisks: sample mean of 100 means and sample standard deviation of the mean

• Solid line: expected value of the mean (= 0) and (dashed) of the standard deviation 

of the mean (= 1/sqrt(n))

Standard deviation of the mean: 
empirical vs. expected values
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Ensemble Kalman filter

• Replace xt with   , the mean of an ensemble of 

forecasts

• Replace Pf and Pa with Pf
e and Pa

e calculated 

from an ensemble of forecasts (error ~1/N)

where                           with, e.g.,

• We define

with             

and, e.g.,  
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EnKF features
• Unlike the EKF, the EnKF makes use of the full 

nonlinear model M: more accurate determination of 
error growth (and of error saturation)

• The Kalman gain K is computed without the need to 

calculate Pf. This is particularly advantageous when 
observations are processed serially

• No need to linearize the observation operator H

• Each ensemble member can be propagated forward 
in time independently: highly parallel algorithm

• Model error term can be included as a perturbation 
of the deterministic forecast
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Covariance localization

• When forecast error covariance is misspecified 

(e.g., due to neglecting model error, or when N

<< n), it may include spurious correlations 

between very distant grid points

• A common solution is to multiply each Pf
e

element by an appropriate weight that reduces 

long-distance correlations

• This ensures that only the components of Pf
e

believed to represent the corresponding 

components of Pf accurately are retained
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Covariance localization: an example

(a) Pf
e (N=25)

(b) Pf
e (N=100)

(c) Correlation function 
with compact support

(d) localized Pf
e (N=25)

From Fig. 6.4 
of Hamill, 2006
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Other issues
• In the extra-tropics at large scale the atmosphere is 

in near-geostrophic balance. An inappropropriate 

(e.g., too narrow) localization may give rise to 

unbalanced increments (e.g., between height 

gradient and wind increments)

• Analysis update equations are optimal only when 

errors are Gaussian (not necessarily the case)

• Unless model error is properly taken into account, 

forecast errors may be underestimated

• Computational expense is proportional to number of 

observations: problems when obs are “too many” 
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EnKF variants
• To estimate Pa

e correctly, the EnKF algorithm requires the 

observations to be treated as random variables: stochastic or 

fully-Monte Carlo algorithm

• An alternative strategy consists in requiring Pa
e to be 

consistent with the analysis error covariance prescribed by the 

Kalman filter: deterministic algorithms (nonuniqueness).

• An advantage of deterministic algorithms is to avoid 

misrepresentation of observation error (due to finite sampling) 

statistics

• Deterministic algorithms prescribe the expression of the matrix 

of the ensemble member perturbations (from the mean), that 

is a square-root (or, more precisely, Cholesky factor) of Pa
e: 

also called square-root algorithms (e.g., EnSRF)
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Conclusions

• Ensemble-based algorithms are imposing 

themselves as viable alternative to the more 

established variational techniques for NWP data 

assimilation

• Their easy method of implementation makes it 

easier to scientists (including PhD students!) to 

contribute to research in data assimilation

• They provide a natural framework to generate 

probabilistic forecasts, i.e. forecasts with a 

quantitative estimate of their errors


