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MODIS:  

Moderate Resolution Imaging Spectrometer 

• Two in orbit (onboard 

Terra and Aqua) 

• Since 2000 

• Daily global coverage 

• 250m  1km resolution 

• Various spectral channels 

 



Some definitions - BRF 

• Bidirectional reflectance factor  

– The ratio of the radiance reflected into a finite solid 

angle and the radiance reflected into the same angle 

(under the same illumination conditions) from a perfect 

Lambertian reflector 

– This is what is reported as “reflectance” from passive 

optical sensors (MODIS, Landsat, LISS etc) which 

observe the top of atmosphere radiance 



Some definitions - BRDF 

• Bidirectional reflectance distribution function  

– ratio of incremental radiance, dLe, leaving surface 

through an infinitesimal solid angle in direction (v, v), 

to incremental irradiance, dEi, from illumination direction 
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BRDF example 

Modelled barley reflectance, v from –50o to 

0o (left to right, top to bottom). 



BRDF example 



MODIS BRDF sampling 



Some definitions – spectral albedo 

• Spectral albedo 

– The integral of the BRDF, at one wavelength, over the 

viewing hemisphere with respect to the illumination 

conditions. Two commonly used forms: 
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Some definitions – albedo 

• Albedo (or “broadband” albedo) 

– The spectral albedo integrated over the desired 

wavelength range: 

 

 

 

– p(λ) is the proportion of incoming radiation at the given 

wavelength and α(λ) is the spectral albedo 

 

     dp



From data to information... 

• The key to understanding the remote sensing 

signal is to understand how the target modifies the 

EMR distribution  

• To begin with, assume the canopy is filled with 

randomly positioned ‘plate’ absorbers (i.e. 

leaves)... 
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1-D plane-parallel semi-infinite turbid medium 
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1-D Scalar Radiative Transfer Equation 

 • for a plane parallel medium (air) embedded with a 

low density of small scatterers 

• change in specific Intensity (Radiance) I(z,) at 

depth z in direction  with respect to z: 

 

 

 

 

• Requires either numerical techniques or fairly 

broad assumptions to solve 
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A [relatively] simple semi-discrete solution 
Gobron, N., B. Pinty, M. M. Verstraete, and Y. Govaerts (1997), A semidiscrete model for 

the scattering of light by vegetation, J. Geophys. Res., 102(D8), 9431–9446, 

doi:10.1029/96JD04013.  
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Operational models 

• Probably the minimum model required to be 

general enough to work for most vegetation types 

requires some element of radiative transfer and 

geometric optics 

• However such models are typically very difficult 

and/or time consuming to invert 



Kernel driven BRDF model 

 

ISOTROPIC VOLUMETRIC GEOMETRIC 

+ + 

surface BRDF =  



f = kernel weight 
K  = kernel value 
n = number of kernels  
 
 

λ  = wavelength 
ρ   = BRF 
Ω  = view geometry 
Ω'  = illumination geometry 
 

Kernel driven BRDF model 
 



Dominant scattering map  

(near infra red): 

 

Red = Geo 

Green = Iso 

Blue = Vol 

 



K is known for any given geometry, so if f  
can be determined this enables: 
 
•Calculation of integral terms (e.g. albedo)  
•Normalisation of data to common geometries 
•Higher level data processing (e.g. burn scars)  

Kernel driven BRDF model 

ρ=Kf y=Hx 

H is known for any given geometry, so if y  
can be determined this enables: 
 
•Calculation of integral terms (e.g. albedo)  
•Normalisation of data to common geometries 
•Higher level data processing (e.g. burn scars)  



Kernel driven BRDF model - albedo 

 

 

• Where a is a vector of (pre-computed) integrals of 

the BRDF kernels 

• N.B. α is a spectral albedo in this case 

α=ax 



Formulation of H 

H =  

Kiso(Ω1; Ωʹ1) Kvol(Ω1; Ωʹ1) Kgeo(Ω1; Ωʹ1) 

Kiso(Ω2; Ωʹ2) Kvol(Ω2; Ωʹ2) Kgeo(Ω2; Ωʹ2) 

Kiso(Ω3; Ωʹ3) Kvol(Ω3; Ωʹ3) Kgeo(Ω3; Ωʹ3) 

Kiso(Ω4; Ωʹ4) Kvol(Ω4; Ωʹ4) Kgeo(Ω4; Ωʹ4) 

Kiso(Ω5; Ωʹ5) Kvol(Ω5; Ωʹ5) Kgeo(Ω5; Ωʹ5) 

⁞ ⁞ ⁞ 

Kiso(Ωn; Ωʹn) Kvol(Ωn; Ωʹn) Kgeo(Ωn; Ωʹn) 



Formulation of y 

y =  

ρ(Ω1; Ωʹ1; λ) 

ρ(Ω2; Ωʹ2; λ) 

ρ(Ω3; Ωʹ3; λ) 

ρ(Ω4; Ωʹ4; λ) 

ρ(Ω5; Ωʹ5; λ) 

⁞ 

ρ(Ωn; Ωʹn; λ) 



Formulation of x 

x =  

fiso(λ) 

fvol(λ) 

fgeo(λ) 



x = (HTR-1H)-1HTR-1y  

• Formulation used for the MODIS      
BRDF/albedo product (MCD43) 
 

• Requires an 16 day window   

Least squares (over determined case) 



Observation errors 

R = rI =  
r 0 0 … 

0 r 0 … 

0 0 r … 

⁞ ⁞ ⁞ 



MODIS band 2: NIR 

MODIS data product (MOD43)‏ 

 



MODIS data product (MOD43)‏ 

MODIS band 2: NIR 



MODIS data product (MOD43)‏ 

Backup inversion algorithm used 



MODIS data product (MOD43)‏ 

No inversion! 



Potential improvements 

• Eliminate use of the backup algorithm 

• Produce daily estimates of kernel weights 

– to improve timing of events 

– best estimates where no data 

• Reduce noise in parameters 

 



Data assimilation 

• A key weakness of the NASA algorithm is that the 

inversions are not constrained in anyway by the 

preceding inversion results 

• This is a clear opportunity to apply data 

assimilation techniques… 



Kalman filter 

• Additional requirements: 

– Dynamic model (M) 

– Model covariance (P) and forcing (Q) 

– Estimate of initial state 

xa = x + K(y - Hx) 



For‏simplicity… 

M = I =  
1 0 0 

0 1 0 

0 0 1 



For‏simplicity… 

P = pI =  
p 0 0 

0 p 0 

0 0 p 



Peculiarities of the system 1 

• Each observation is a linear combination of all 

state vector elements, and… 

• …the dynamic model is not really dynamic 

• Consequently small numbers of observations in 

the analysis window will produce odd state 

estimates (which still fit the observations well) 

 



Peculiarities of the system 2 

• The values of the state elements are unitless and 

not readily interpreted in terms of things we can 

observe on the ground 

– Sometimes qualitative analysis used 

• Consequently validation of the state vector values 

is more-or-less impossible and we have to resort 

to comparing y and Hxa   

 



Example – reflectance data 



Example – retrieved kernel weights 



Example – predictions of BRF & albedo 



Example – predicted vs. observed BRF 



Example – retrieved kernel weights 



Example – predictions of BRF & albedo 



Example – predictions of BRF & albedo 



Example – predicted vs. observed BRF 



In‏the‏practical‏you‏will… 

• Experiment with changing: 

– P, Q, R 

– The size of the analysis window 

– The spectral channel & sensor 

• Also there are data from two regions: 

– Spain (nice, cloud free data) 

– Siberia (sparse, cloudy data) 



Quaife and Lewis (2010) Temporal constraints on 
linear BRDF model parameters. IEEE TGRS 



Quaife and Lewis (2010) Temporal constraints on 
linear BRDF model parameters. IEEE TGRS 



EOLDAS 

• European Space Agency Project to improve data 

retrievals and inter-sensor calibration 

• Weak constraint variational DA scheme using the 

following cost function: 

http://www.eoldas.info/ 



EOLDAS examples 

Lewis P,  Gomez-Dans J, Kaminski T, Settle J, Quaife T, Gobron N, 

Styles J & Berger M (2012), An Earth Observation Land Data 

Assimilation System (EOLDAS), Remote Sensing of Environment. 
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