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The inverse problem



The inverse problem

state variable observation operator observation

Y = h(X)+@<* Observation error

Can we infer the value of the state variable x with the information of
the measurement y?

y h™ X 7

Does it exist?
Is it unique?

It depends... but in general it is an ‘ill-posed’ problem.



The observation operator

state variable

observation operator

observation

Temperature
in a location / T, = h(T)zT — [Temperature
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What are these observational errors?

Example 1 — repeated observations of air temperature

truth truth
X XXXWXXXXXX ! XXXWWHJXXX
unbiased 1 random biased systematic
thermometer ¢ thermometer 1
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Example 2 — representivity \
errors due to model grid o
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The state variables

Meteorological variable

Vertical l longitude
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Statistical properties of errors

Errors (not only observational) are often considered to be Gaussian.
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Solvability of the problem

 The problem can:

a) Have exact solution.

b) Be overdetermined (OLS approach)

C)

Be underdetermined (regularization is
required).

This involves
minimizing a
residual.



The underdetermined problem

Does the traditional least squares solution help (as in the
overdetermined case)? It is not enough!
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This does not
constrain the

X problem

>

obs

There is no unique
‘optimal value’.

Xunobs
In this case, the observations are not enough! We need another

source of information. 10



The undetermined case

It happens a lot in real life!

Data Coverage: Surface (16/8/2006, 0 UTC, qu00) %

Data Coverage: Sonde (16/8/2006, 0 UTC, qu00) %
Total number of observations assimilated: 12165

Total number of ocbservations assimilated: 1614
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Example of observational coverage in the atmosphere. Met Office:©.



Optimal Interpolation
and 3DVar



Combining sources of information:
a scalar example.

We want to determine the temperature at some location, and we
use two thermometers to measure it.

T, =T+g
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error
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T,=T+g¢g,
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Two important considerations:

a) The thermometers are
unbiased, i.e.

E[gl] = E[gz] =0

b) The measurement errors
are independent between
the two thermometers.

Covle,, &,]=0



A simple scalar example

Let us linearly combine the two sources of
information, and consider this our estimator.

S T, =T+g )
/ T=CT +C,T,

l How do we choose these constants for the
estimator to be optimal?

@ P

T Optimal in what sense? It should:
a) Be unbiased:

T,=T+¢, Eff|=T

B EE +
= = a
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b) Minimize the error of the estimation
A 2
77| }
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A simple scalar example

The conditions imply:
a) Be unbiased: C, = (1—C2)

b) Minimize theresidual ¢ __ % o~ __ %

2 2

a O O.

T= 2 : 2T1+ 2 : 2T2
Gl —|‘02 Gl —|‘02

This is the Best Linear Unbiased
Estimator (BLUE)



A simple scalar example

2 2
A o o
T = 2T + L T
ol+ol ' ol+ol ’
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Note that we minimized the cost function.
2 2
T =min J(T):E(Tl_;r) i3 (T, —2T)
T 2 o, 2 o,

What are the sources of information?
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A simple scalar example

What is the variance of this estimator?

2 2
A o O
GT% =Val’[T]= 21 22
o, +0,
T2 <oy . . .
Note that: : iy i.e. the variance of the error is reduced with
<O
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respect to any of the sources. Also

Precision of source 1
Precision of source 2

Precision of the optimal estimator



Sources of information

We have 2 sources of information for the true state of a system.

nynamicaI model X = f(X_,)+W; —— Model E(w,)=0
< X e R\ error Cov(w, )=Q
| y, =h(x, )4V, Observation E(v,)=0
\Observations y e R error Cov(v,)=R
Analysis (‘best’ estimate of the truth)
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Perfect model (for the moment)

Our initial Assimilation.
condition is
Imprecise.
/ a .
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forecast

Yi = h(Xt )"' Vi
X = f(Xt—l)



3DVar

_  Background or forecast.

> X x* =min J(x)
> Y -
— R Observations
S —
|
! 1 1
\
3x) =2 (k=" B2 (y =) R “(y~h(x)
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This is a multidimensional minimization problem!
Where do the covariances come from?...



Where do the covariances come from?

R is considered known (from the specifications of the instrument).
Moreover, it is usually considered diagonal.

B . This is not particularl

2 0 0 0 D Y
, true for some
R — 0 o, 0 O < observations coming
O 0 . 0 from the same
2 instrument, like in
i 0 0O O o, | ,
satellites...

B is trickier... It expresses the relationship among variables in the
model. B has a very important job. It transmits information in the
changes of observed variables to unobserved variables! We
consider it to be static.



3

The background error covariance

Example for the Lorenz 1963 model. In this case B was obtained from
comparing the state of the model at different instants for a very long

run (and ‘tunning’ the magnitudes...).
B

What is this saying?

x® and x? are strongly
correlated: knowing the state
of one gives information
about the other.

variables
]

On the contrary, x®) is not

correlated to the other 2.

Knowing its value does not

" il . yield information on the
others.




Covariances

B for the Lorenz 1996 model with 20 variables. Again, it was obtained

by comparing different instants of a long run.
B

o
variables

— b
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variables

So far, we have not included any error in the forecast. If there were, it
would affect B.



3DVar: a minimization problem

J(x)= %(x—xb )T B‘l(x—xb)+%(y —Hx)' R™*(y — Hx)

A

If the observation operator is linear,
there exists a global minimum and
no local minima.
> X

3(0)=2 (=] B2 (x=x")+ -y ~hx))" R *(y ~ hix)
J A

The minimization becomes complicated
when the observation operator is
nonlinear. A > X




3DVar: a minimization problem

Conditions for the solution:

()= (=] B2 (x=x")+ -y = hlx)) R4 (y = h(x)
VJ(x)=0 /\

B—l(x_xb)_ H R—l(y B h(x)) ~0 This is the JaFobian of
the observation operator

VI(x)>0 - )
B*+H'"R'H'>0

OX
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3DVar: a minimization problem
J(x)

I L

There are many methods to do this minimization. One must
choose efficiency and feasibility. 26



Minimizing the cost function

Met Office Operational Forecast 14/01/03
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Value of the cost function and its components as a
function of iteration for Met Office © 3DVar.



Preconditioning

Let us take a look on the cost function again.
()= (x=x*J B e o (y ~h(x)) Ry~ ()

B can be badly conditioned. The following change of variable
may useful:

v=B%*(x—x")
Then, the cost function looks like:

J(v)= %VTV+%(y —h(B¥2v+x" )] Ry —h(BY?v+x°))

This is better conditioned.



Preconditioning

Knowledge of the Hessian of the cost function can be
used to preconditioned.

For example, ECMWEF uses a Lanczos algorithm to
minimize the cost function and save the leading
eigenvectors to precondition the next assimilation.



A Bayesian interpretation

We can combine the two sources using Bayes theorem:

p(x]y)=— p(x)p(y|x)

A
posterior prior likelihood
> > >
Can beviewedasa < A= p(yn)

normalization constant :j



A Bayesian interpretation
The 3Var solution is a Maximum A Posteriori (MAP)

estimator.

1 ~3(x)
p(x1y)=+ p()p(y | p(x]y)ece
s> The value that
minimizes the cost
posterior function corresponds

to the mode of the
posterior distribution.

> X




Advanced methods:
ADVar



One extra dimension: time

So far, we have considered the observation and assimilation to
occur at the same time. This is rarely the case, one cannot
assimilate every time a new observation arrives.

How do we assimilate observations distributed in a forecast
window??

—_———




One extra dimension: time

a) Consider the observations to have occurred at the same
(intermediate) time, and then perform 3DVar.

f—
-
—’
e =

|
| |
t=0 t =6hr t

b) Find a trajectory that fits the observations throughout the whole
forecast window. This is 4DVar: we have added an extra
dimension to the minimization. Two flavours: strong constraint

and weak constraint.



Strong constraint 4D-Var

In the absence of model error, this reduces to finding the initial
condition that produces the trajectory that fits observations best
throughout the whole window.

o O
~ ___—,//:’_-v
. ____—---""" R
X(t=0) ® - _____-- - o
: o
t=0 t =6hr t

Since the model is perfect, the initial condition determines the
whole trajectory.



Strong constraint 4DVar

Again, the solution is the minimizer of a
(more complicated) cost function.

x* =min J (xo)

36)=2 60 5T B2 - {z(

e Ry e

\ J

I
‘]b

J, contains the model.

The ‘modified’ observation operator includes the time evolution

of the initial condition.

e () = hix(t =t,,,) = h(f ()




Strong constraint 4DVar

The conditions for the solution:

vI(x°)=0
B (x° —Xx° )+ i Frlos’ HT R‘l(ytobs —hies(x° )): 0
t, =1
o Of (xo)
x|

F'is known as the tangent linear model (TLM) and F'" is known
as the adjoint.



The TLM and the adjoint

The TLM and the adjoint have very important tasks.

The TLM (linearly) evolves perturbations around a control
trajectory.

The adjoint (linearly) projects the impact of observations to the
start of the assimilation window.
T

Ozbs F-tobsT HT R—l(ytobs B htobs(xo ))

tobs:]-

They are approximations... the stronger the nonlinearity and the
longer the assimilation window the less accurate they will become.



The 4DVar cycle

The minimization through time is designed in the following
recursive fashion:

X FORWARD MODEL M J(x)
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x= ra
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Incremental formulation

Let:

K =x° —x° 5y‘obs _ ytobs _ Rtoss (Xo,b)
J= %(5x0 )T B‘1(5x°)+ 1 i(@ o HFOtobs gy 0 )T Rl(éy " HFO*tObS5x0)

tobs:]-

This works when the nonlinearity is not terribly strong.

Outer loops are iterations of the nonlinear formulation. Inner
loops are iterations of the incremental formulation.



Testing the TLM (static)

| FOx“+2%¢) - (F(X) + F(x™)*2%) |
forL63atx=5.77153 944799 154514

Using the Lorenz 63 model,

3.5}
we study how the 1t order
3 truncation of the Taylor
- loses accuracy.

_f(xc +5x)z f(xc)+ F| . X

difference

41



Testing the TLM (dynamic)
f0—>t(XO,c_|_5X ) .I:O—>t( )_I_F|O—>t( 00)5)(

| FOC+ax1) - (FOE,1) + F(x",1)* Ax(t0)) |
for L63 starting at x=5.77153 944799 154514

Evaluating the difference
between the exact time
evolution of a trajectory, B
with respect to the 304"
nonlinear evolution of
the control and the
linear evolution of the
perturbations using the
TLM.

420

e 15

Again, Lorenz 1963 is
used.




3D vs 4DVar

RMS errors after DA, observing x,y and z

4DVar has important b — Sovnr. A0
. . a5 3Dvar | — 4L AH, HMSE=0.40 [
information from the N '

. . _ 2.5 |
future (after all, itis a g, _ |

Blmimim b imimiman observation error_ _ | _

smoother), 3DVar does /Z
not. NI

1340 1360 1380 1400

time step
The figure shows a £ Wl | ', t L
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comparison of the : Ly ) EIL i
=] ke 1 I|, ﬁ [
performance ofthetwo 5 o [ /7 "L, . 1
s oo WU \AAAAAANATU L
methods. Taken from 8o |t J Gy VYRRV
g -15 % *
Evans et al, 2005. Sl o e
time step

DA cycle and observations: 8Ar, R=2*1
4D-Var assimilation window: 24Ar
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How long should the assimilation window be?

The longer the 4D assimilation window the more observations we’ll
have... but also the more nonlinear the forecast will be. The best
should be somewhere in the middle.

Win=8 | 16 | 24 | 32 | 40 | 48 56 64 | 72
3 | Fixed window | 0.50 | 050 | 047 | 043 [ 062 | 0.85 | 096 | 091 | 0.8
Statwith | 559 | 051 | 047 | 043 | 042 | 039 | 044 | 038 | 043
short window
Performance of 4DVar using the It

Lorenz 1963 and different lengths
of assimilation window (Kalnay et

al., 2007).

It is recommendable to do the

minimization progressively while

increasing the assimilation
window (Pires et al., 1996).
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Weak constraint 4DVar

What if the model is not perfect?
. E[Wt]=0
. Covlw,]=Q
I- ¢ ’I \\Ilb
|
/I \\\ ‘A\ '/’—l\
’ = S 4 } ~-n
m’ - & \ ‘l o
/’ \"‘ T l'
e - o /.
\ e
At
T

t=0 t=1 ‘—y—’ t=T-1 t=T

The forecast contains a random component.

In this case it is not enough to find an optimal initial condition, since it
does not uniquely determine the trajectory. We have more control

variables (the random jumps from a time step to the next).



Weak constraint 4DVar

The minimization has an extra term.

Xa,O:T _ min .J (XO:T)
XO:T

{Xa,O’Wa,l:T }: min J (XO’leT)

x0 wiT

Xy = f(Xt—l)+Wt

J(XOT):%(XO—xb)TB‘l(xo—xb) >J,
LSy ) Ryl >3,

t,pe=1
+%i(xt _ ot (Xt—l ))T Q—l(xt _ ot (Xt—l)\ >J_

t=1

46



Some final comments

What is the best way to compute B? Also, how much are we
losing by not evolving this background covariance? Especially
important in 3DVar.

Preconditioning and transformations to the formulation in order
to make the minimization problem more feasible.

One of the main difficulties in 4DVar is to compute the
TLM/Adjoint for different models. It is hard work...



