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The inverse problem 
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The inverse problem 

Observation error 

x

  vxhy 

Can we infer the value of the state variable x with the information of 
the measurement y? 

 

 

 

 

 

It depends… but in general it is an ‘ill-posed’ problem.   

 

yh

state variable  observation  observation operator  
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xy ?
1h

Does it exist?  

Is it unique? 



The observation operator 

Temperature 
Temperature 
in a location 

T

  TThTo 

  4TThro  Radiance 

state variable  observation  observation operator  
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What are these observational errors? 
Example 1 – repeated observations of air temperature  

truth 

unbiased 
thermometer 

biased 
thermometer 

Example 2 – representivity 
errors due to model grid 

truth 

random systematic 



The state variables 
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Meteorological variable 

 longitude 

 latitude 

 vertical 
level 

 

longitude latitude 

Vertical 
level 



Errors (not only observational) are often considered to be Gaussian. 
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Solvability of the problem 
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• The problem can: 

 

a) Have exact solution. 

 

b) Be overdetermined (OLS approach) 

 

c) Be underdetermined (regularization is 
required).  

This involves 
minimizing a 

residual. 



Does the traditional least squares solution help (as in the 
overdetermined case)? It is not enough! 

The underdetermined problem 
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In this case, the observations are not enough! We need another 
source of information.  

 OLSJ
x

xminˆ

obsx

unobsx

2
Hxy OLSJ

This does not 
constrain the 
problem 

There is no unique 
‘optimal value’. 



The undetermined case 

 

11 Example of observational coverage in the atmosphere. Met Office ©. 

It happens a lot in real life! 



Optimal Interpolation  

and 3DVar 
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Combining sources of information: 
a scalar example. 

We want to determine the temperature at some location, and we 
use two thermometers to measure it.  

T

11 TT

22 TT

  
error 

error 

Two important considerations: 

a) The thermometers are 
unbiased, i.e.  

 

 

b) The measurement errors 
are independent between 
the two thermometers. 

    021   EE

  0, 21 Cov

  2

11  Var

  2

22  Var
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A simple scalar example 
Let us linearly combine the two sources of 
information, and consider this our estimator. 

 

 

How do we choose these constants for the 
estimator to be optimal? 

 

Optimal in what sense? It should: 

a) Be unbiased:  

 

b) Minimize the error of the estimation 

  

T

11 TT

22 TT

2211
ˆ TCTCT 

  TTE ˆ

 





 
2

ˆˆ

ˆminˆmin TTETTVar
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A simple scalar example 
The conditions imply: 

a) Be unbiased:  

 

b) Minimize the residual 
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This is the Best Linear Unbiased 
Estimator (BLUE) 
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A simple scalar example 

Note that we minimized the cost function. 
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What are the sources of information? 
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A simple scalar example 
What is the variance of this estimator? 

 

 

 

Note that:                   , i.e. the variance of the error is reduced with 

 

 respect to any of the sources. Also  
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Sources of information 
We have 2 sources of information for the true state of a system. 
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Dynamical model   

 

 

Observations 

Analysis (‘best’ estimate of the truth) 
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Perfect model (for the moment) 
Our initial 

condition is 
imprecise. 
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 1 tt f xx

t
1t0t

  ttt h vxy 

2t

forecast 

Assimilation. 

 0tx



3DVar 
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t

b
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a
x  xx

x
Ja min

Background or forecast. 

Observations 

           xyRxyxxBxxx hhJ
TbTb   11

2

1

2

1

bJ
oJ

This is a multidimensional minimization problem! 

Where do the covariances come from?... 



R is considered known (from the specifications of the instrument). 
Moreover, it is usually considered diagonal.   

 

 

 

 

 

 

B is trickier… It expresses the relationship among variables in the 
model. B has a very important job. It transmits information in the 
changes of observed variables to unobserved variables! We 
consider it to be static.  

Where do the covariances come from? 
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This is not particularly 
true for some 
observations coming 
from the same 
instrument, like in 
satellites… 



What is this saying? 

 

       and          are strongly 
correlated: knowing the state 
of one gives information 
about the other.  

 

On the contrary,        is not 
correlated to the other 2. 
Knowing its value does not 
yield information on the 
others. 

 

 

 

 

 

 

 

 

 

The background error covariance 
Example for the Lorenz 1963 model. In this case B was obtained from 
comparing the state of the model at different instants for a very long 
run (and ‘tunning’ the magnitudes…).   

 3x

 1x  2x



Covariances 
B for the Lorenz 1996 model with 20 variables. Again, it was obtained 
by comparing different instants of a long run.  

 

 

 

 

 

 

 

 

 

 

So far, we have not included any error in the forecast. If there were, it 
would affect B.  

 



3DVar: a minimization problem 
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The minimization becomes complicated 
when the observation operator is 
nonlinear.  

If the observation operator is linear, 
there exists a global minimum and 
no local minima. 
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3DVar: a minimization problem 
Conditions for the solution: 

           xyRxyxxBxxx hhJ
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3DVar: a minimization problem 
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 xJ

There are many methods to do this minimization. One must 
choose efficiency and feasibility.  



Minimizing the cost function 

Value of the cost function and its components as a 
function of iteration for Met Office © 3DVar. 
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Preconditioning 
Let us take a look on the cost function again. 

 

 

B can be badly conditioned. The following change of variable 
may useful: 

 

 

Then, the cost function looks like: 

 

 

 

This is better conditioned. 
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Preconditioning 
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Knowledge of the Hessian of the cost function can be 
used to preconditioned. 

 

For example, ECMWF uses a Lanczos algorithm to 
minimize the cost function and save the leading 
eigenvectors to precondition the next assimilation. 



A Bayesian interpretation 

We can combine the two sources using Bayes theorem: 
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normalization constant 



A Bayesian interpretation 
The 3Var solution is a Maximum A Posteriori (MAP) 
estimator. 
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The value that 
minimizes the cost 
function corresponds 
to the mode of the 
posterior distribution. 



Advanced methods: 

4DVar 
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So far, we have considered the observation and assimilation to 
occur at the same time. This is rarely the case, one cannot 
assimilate every time a new observation arrives.  

 

How do we assimilate observations distributed in a forecast 
window? 

 

One extra dimension: time 

thrt 60t

 0tx



a) Consider the observations to have occurred at the same 
(intermediate) time, and then perform 3DVar. 

 

 

 

 

 

 

 

b) Find a trajectory that fits the observations throughout the whole 
forecast window. This is 4DVar: we have added an extra 
dimension to the minimization.  Two flavours: strong constraint 
and weak constraint.  

 

One extra dimension: time 

thrt 60t



In the absence of model error, this reduces to finding the initial 
condition that produces the trajectory that fits observations best 
throughout the whole window. 

 

Strong constraint 4D-Var 

 0tx

t
hrt 60t

Since the model is perfect, the initial condition determines the 
whole trajectory. 



Strong constraint 4DVar 
Again, the solution is the minimizer of a 
(more complicated) cost function. 
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The ‘modified’ observation operator includes the time evolution 
of the initial condition.  



Strong constraint 4DVar 
The conditions for the solution: 

 

 

 

 

 

 

 

     is known as the tangent linear model (TLM) and        is known 
as the adjoint. 
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The TLM and the adjoint 
The TLM and the adjoint have very important tasks.  

 

The TLM (linearly) evolves perturbations around a control 
trajectory.  

 

The adjoint (linearly) projects the impact of observations to the 
start of the assimilation window.  

 

 

 

They are approximations… the stronger the nonlinearity and the 
longer the assimilation window the less accurate they will become. 
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The 4DVar cycle 
The minimization through time is designed in the following 
recursive fashion: 
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Incremental formulation 
Let: 

 

 

 
This works when the nonlinearity is not terribly strong.  

 

Outer loops are iterations of the nonlinear formulation. Inner 
loops are iterations of the incremental formulation.  
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Testing the TLM (static) 

Using the Lorenz 63 model, 
we study how the 1st order 
truncation of the Taylor 
loses accuracy. 
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Testing the TLM (dynamic) 

Evaluating the difference 
between the exact time 
evolution of a trajectory, 
with respect to the 
nonlinear evolution of 
the control and the 
linear evolution of the 
perturbations using the 
TLM. 

 

Again, Lorenz 1963 is 
used. 
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3D vs 4DVar 

4DVar has important 
information from the 
future (after all, it is a 
smoother), 3DVar does 
not. 

 

The figure shows a 
comparison of the 
performance of the two 
methods. Taken from 
Evans et al, 2005.  
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The longer the 4D assimilation window the more observations we’ll 
have… but also the more nonlinear the forecast will be. The best 
should be somewhere in the middle.  

How long should the assimilation window be? 

It is recommendable to do the 
minimization progressively while 
increasing the assimilation 
window (Pires et al., 1996). 44 

Performance of 4DVar using the 
Lorenz 1963 and different lengths 
of assimilation window (Kalnay et 
al., 2007).   



Weak constraint 4DVar 
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Weak constraint 4DVar 
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Some final comments 
• What is the best way to compute B? Also, how much are we 

losing by not evolving this background covariance? Especially 
important in 3DVar. 

 

• Preconditioning and transformations to the formulation in order 
to make the minimization problem more feasible.  

 

• One of the main difficulties in 4DVar is to compute the 
TLM/Adjoint for different models. It is hard work… 
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