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Visible Imagery

I Visible light image from
SEVIRI on Meteosat-9

I SEVIRI = Spinning
Enhanced Visible and
InfraRed Imager

I SEVIRI measures light
through telescope with field
of view about 3 km across at
sub-satellite point

I As satellite rotates, field of
view scans E-W

I Telescope mirror tilted to
scan N-S

I One image every 15 min
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The Problem with Visible Imagery

I Visible imagery relies on
reflected sunlight, so doesn’t
work at night.

I Fortunately, there’s a whole
electromagnetic spectrum
out there . . .
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Emitted Infrared Radiation
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I All bodies emit
electromagnetic radiation on
account of their
temperature.

I For a perfectly emitting
blackbody, the emitted
radiance is given by the
Planck function (left).

I At terrestrial temperatures,
the peak radiation is emitted
in the infrared around 10 µm.

I This suggests that we try
observing there.
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Atmospheric Transmittance
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I The atmosphere is opaque
at many wavelengths
because of absorption of
radiation by its constituent
gases.

I We should avoid these
wavelengths if we want to
see down to the surface.

I There are relatively
transparent windows around
3.7 µm and 8–12 µm (the
latter punctuated by ozone
absorption near 9.6 µm).
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Infrared Imagery

I Image from SEVIRI’s
10.8 µm channel at 0 UTC

I Observing emitted radiation
frees us from dependence on
sunlight.
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An Infrared Image Is a Heat Map
Visible:

Infrared:

I Warm bodies (Earth’s surface, low
clouds) emit more radiation than cold
bodies (high cloud tops).

I Shading convention:
I Black = high radiance
I White = low radiance

I This is the opposite to what one might
expect, but ensures deep clouds appear
white.

I Compare the deep convective cloud over
DR Congo and Sudan with the shallow
cloud off the coast of Angola and
Namibia, almost invisible in the infrared.

I Note also the hot deserts.
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What Does the Earth Look Like at an Opaque
Wavelength?

I Image from SEVIRI’s 6.2 µm
channel

I Water vapour (WV) absorbs
at this wavelength.

I Can no longer see the
Earth’s surface

I Can still see the highest
clouds

I Elsewhere, recall Kirchhoff’s
law: a good absorber is a
good emitter.

I The radiation comes from
the WV in the air.
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Where Exactly Does the Radiation Come from?
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I The received radiation is dominated by radiation from the
middle troposphere.

I The more WV there is in a column of air, the higher in the
atmosphere the radiation comes from.
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Water Vapour Imagery

I WV imagery uses the same
reverse shading convention
as IR imagery.

I Black = warm = radiation
from low in troposphere =
dry column of air

I White = cold = radiation
from high in troposphere =
wet column of air
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Imagers v Sounders

I Satellite instruments can be classified as imagers or sounders:

Imagers have a high horizontal resolution and observe
the atmosphere at a few wavelengths.

Sounders have a coarser horizontal resolution (tens of km)
but observe the atmosphere at many
wavelengths.

I The many wavelengths enable vertical profiles of temperature,
water vapour, and other trace gases to be retrieved.

I The distinction between modern imagers and sounders isn’t
clear cut: sounders can produce images and imagers can have
limited sounding capabilities.
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The Physics of Sounding
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I The physical basis of sounding is the same as that of WV
imagery, but applies to other absorbing gases too.

I Let’s make this more quantitative.
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Assumptions

We make some simplifying assumptions:

I The satellite looks vertically downwards.

I The satellite observes a single wavelength λ.

I There are no clouds in the field of view.

I The atmosphere is sufficiently opaque that no radiation from
the surface reaches the satellite.

I Scattering of radiation is negligible compared to emission and
absorption.

These assumptions are not necessary in a more detailed treatment.
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Radiative Transfer Equation

Under these assumptions, the radiance reaching the satellite at
wavelength λ is

Lλ =

∫ zT

0
Bλ(T (z))

dτλ
dz

dz

where

I z is altitude

I zT is altitude of top of atmosphere

I T (z) is temperature of atmosphere at altitude z

I Bλ(T ) is blackbody radiance at wavelength λ, temperature T

I τλ(z) is transmittance at wavelength λ between altitude z and
top of atmosphere
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Weighting Function

Lλ =

∫ zT

0
Bλ(T (z))

dτλ
dz

dz

I dτλ
dz is called the weighting function.

I It is always positive.

I Lλ is like a weighted average of blackbody radiances at
different levels of the atmosphere.

I It is a true average because∫ zT

0

dτλ
dz

dz = τλ(zT) − τλ(0) = 1 − 0 = 1
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Weighting Functions

Source:
amsu.cira.colostate.edu

I Different wavelengths have
different transmittance
profiles and hence different
weighting functions.

I The graph shows the
weighting functions of the
AMSU-A instrument.

I AMSU = Advanced
Microwave Sounding Unit

I By observing at multiple
wavelengths, a sounder
obtains information about
the atmosphere at multiple
levels.
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Brightness Temperature

I If the atmosphere were isothermal with temperature T , then
Lλ = Bλ(T ).

I We could recover T by inverting the Planck function Bλ(T ).

I In a non-isothermal atmosphere, we can define the brightness
temperature at wavelength λ as the temperature such that
Lλ = Bλ(TB).

I TB is also known as the equivalent blackbody temperature.

I TB is a complicated average of the temperature at all levels of
the atmosphere.

I This average is weighted towards the level where the
weighting function peaks.

I Time-series of TB are used for climate monitoring.

I But what we’d really like to know is the temperature profile
T (z).

20 / 39



Imagery

Soundings

Principles of Retrievals

Mathematical Framework for Retrievals

21 / 39



Temperature Soundings

Lλ =

∫ zT

0
Bλ(T (z))

dτλ
dz

dz

I To calculate τλ(z) and thus Lλ, we need to know T (z) and
the mixing ratio profile q(z) of the absorbing gas.

I For a well-mixed gas like CO2 or O2, q(z) is a know constant.

I Soundings for temperature are made using CO2 absorption in
the infrared and O2 absorption in the microwave.

I For such a gas, we can calculate Lλ given only T (z).

I If the sounder observes at p different wavelengths, we have p
different equations for T (z).

I But T (z) has infinitely many unknowns (one for each
altitude), so these equations are not enough to determine it.
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Some Terminology

Lλ =

∫ zT

0
Bλ(T (z))

dτλ
dz

dz

I The problem of calculating Lλ given T (z) is called the
forward problem.

I The problem of finding T (z) given measurements of Lλ is
called the inverse problem.

I The T (z) found by solving the inverse problem is said to have
been retrieved from the measurements and is called a retrieval.
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Temperature Retrievals
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I We have to adopt a discrete
representation of T (z).

I One possibility is to
represent T (z) by its values
at n discrete altitudes and
to assume that it varies
linearly in between (see left).

I We then have p equations in
n unknowns.

I We might hope that by
taking n = p we could solve
these equations to determine
T (z).

I But there are problems . . .
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Ill-Conditioning

Source:
amsu.cira.colostate.edu

I There is a large overlap
between the weighting
functions for different
wavelengths.

I As a result, the p equations
are not very independent.

I The problem is
ill-conditioned: small errors
in the data lead to large
errors in the solution.

I And there will be errors in
Lλ due to measurement
noise and other sources.

I We have to do something
else.
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Solutions

1. Accept a lower resolution for the discrete temperature profile
(n < p) and find the profile that best matches the radiance
measurements. This can avoid ill-conditioning.

2. Use additional information about the temperature profile,
such as climatology or a prediction from a numerical weather
prediction (NWP) system. Then we can take n = p or even
n > p and avoid ill-conditioning.

3. Don’t bother with retrievals. The data assimilation
component of an NWP system generally doesn’t use a
retrieval. Instead, it uses the radiance measurements directly
and adjusts the forecast to find the best simultaneous match
to these and all other measurements.
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Humidity Retrievals

Lλ =

∫ zT

0
Bλ(T (z))

dτλ
dz

dz

I Sounders also observe at wavelengths sensitive to absorption
by water vapour.

I Recall that to evaluate the integral in the radiative transfer
equation we need to know the temperature profile T (z) and
the mixing ratio profile q(z) of the absorbing gas.

I For temperature retrievals, we used a well-mixed gas for which
q(z) was a known constant.

I To retrieve water vapour, we can use T (z) from a
temperature retrieval.

I Then all of the preceding applies with q(z) as our unknown
instead of T (z).

I This applies to other trace gases too.
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Recapitulation of the Temperature Retrieval Problem
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I We have radiance
measurements at p different
wavelengths sensitive to
absorption by a well-mixed
gas of known mixing ratio.

I We want to use these
measurements to determine
the n numbers that
characterise a discrete
representation of the
temperature profile.

I We want to avoid
ill-conditioning, so the naive
approach of taking n = p
and solving p equations in p
unknowns won’t work.
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State Space and Observation Space

I Join the temperatures T1, . . . ,Tn discretely representing the
temperature profile into a vector:

x =

 T1
...

Tn


I x represents the temperature profile as a point in

n-dimensional state space.

I Join the radiances observed at the wavelengths λ1, . . . , λp

into a vector:

y =

 Lλ1

...
Lλp


I y represents the observations as a point in p-dimensional

observation space.
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Observation Operator

Lλ =

∫ zT

0
Bλ(T (z))

dτλ
dz

dz

I Given x, we are assuming that the integral in the radiative
transfer equation can be evaluated for the temperature profile
represented by x.

I Let Hi (x) denote this integral evaluated at wavelength λi .

I Assemble the Hi (x) into a vector:

H(x) =

 H1(x)
...

Hp(x)


I The function H(x) is called the observation operator.

I H(x) is what the observations would be if x were the true
state of the atmosphere and there were no observation errors.
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Observation Errors

I In the naive approach to temperature retrievals, we tried to
solve the equation

y = H(x)

I This didn’t work because of ill-conditioning and because if x is
the true state of the atmosphere, the observations will be not
H(x) but

y = H(x) + ε

where ε is the observation error vector.

I The ith component of ε represents the error in the
measurement of the radiance Lλi

.

I In general, we don’t know ε, only its statistical properties.
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Observation Error Covariance Matrix

I Two basic statistical properties are mean and variance.

I We assume that the ith component of ε has mean zero and
known variance σ2

i .

I The observation error covariance matrix is a p× p matrix with
these variances down the main diagonal:

R =

 σ2
1

. . .

σ2
p


I If there are correlations between the errors in the

measurements of different radiances, these can be represented
by off-diagonal elements of R.
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Cost Function

With the machinery now created, we can define a cost function:

J(x) = (y − H(x))TR−1(y − H(x))

Interpretation:

I x is a proposed temperature profile.

I H(x) is what the radiances would be if x were the true
temperature profile and there were no observation errors.

I y − H(x) is the difference between these hypothetical
radiances and the actual observed radiances.

I J(x) is a measure of the size of this difference in which more
accurately observed radiances are given greater weight.
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Variational Temperature Retrievals

I The smaller J(x), the better the agreement between the
proposed temperature profile x and the measured radiances.

I This leads to the following retrieval algorithm:

Choose the value of x that minimises J(x)

I There are mathematical techniques and software packages for
doing this.

I If n = p, the algorithm reduces to solving y = H(x) and we
are no better off.

I But if we take n < p, we can avoid ill-conditioning.

I We avoid ill-conditioning at the expense of accepting a lower
resolution temperature profile.
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Use of a Background Term

I But what if we need a higher resolution temperature profile?

I All is not lost.

I Even in the absence of observations, we won’t be totally
ignorant about the temperature profile.

I We might have climatological information or a prediction from
an NWP system.

I This information can be expressed as a background state
estimate xb and a background error covariance matrix B.

I We can incorporate these into the cost function:

J(x) = (y − H(x))TR−1(y − H(x)) + (x− xb)TB−1(x− xb)

I The problem of minimising this J(x) can remain
well-conditioned even if n > p.
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Humidity Retrievals

Lλ =

∫ zT

0
Bλ(T (z))

dτλ
dz

dz

I Recall that to evaluate the integral in the radiative transfer
equation we needed to know the temperature profile T (z) and
the mixing ratio profile q(z) of the absorbing gas.

I For temperature retrievals, we used a well-mixed gas for which
q(z) was a known constant.

I To retrieve water vapour, we can use T (z) from a
temperature retrieval.

I Then all of the preceding applies with q(z) as our unknown.

I x will now be a discrete representation of the humidity mixing
ratio profile.

I This all applies to other trace gases too.
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Data Assimilation

The framework set up for retrievals is identical to the
three-dimensional variational data assimilation (3D-Var) used by
some NWP systems.

J(x) = (y − H(x))TR−1(y − H(x)) + (x− xb)TB−1(x− xb)

I x is the state of the atmosphere as represented by the NWP
system, incorporating all its variables at all its grid points.

I xb is the current state according to a previous forecast.

I y contains all of the observations from the global observing
system that it has been decided to assimilate.

I H(x) calculates what these observations would be if x were
the true state of the atmosphere.
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Further Reading

Clive D. Rodgers.
Inverse Methods for Atmospheric Sounding: Theory and
Practice.
World Scientific, 2000.
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