Particle Filters Part I: Theory

Peter Jan van Leeuwen

Data-Assimilation Research Centre DARC

University of Reading

IIRS, Dehra Dun, December 2012

Why Data Assimilation

- Prediction
- Model improvement:
 - Parameter estimation
 - Parameterisation estimation
- Increase our understanding

Data Assimilation Ingredients

Prior knowledge, the Stochastic model:

$$x^{n} = f(x^{n-1}) + \beta^{n-1}$$

- Observations:
- Relation between the two: $y^n = H(x^n) + \epsilon^n$

$$y^n = H(x^n) + \epsilon^n$$

Data assimilation: general formulation

Parameter estimation:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

with

$$y = H(\theta) + \epsilon$$

Again, no inversion but a direct point-wise multiplication.

Propagation of pdf in time: Kolmogorov's equation

Model equation:

$$x^{n} = f(x^{n-1}) + \beta^{n-1}$$

Pdf evolution: Kolmogorov's equation (Fokker-Planck equation)

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\partial f(x,t)p(x,t)}{\partial x} + \frac{1}{2}\frac{\partial^2 p(x,t)Q}{\partial x^2}$$

advection

diffusion

Motivation ensemble methods:

'Efficient' propagation of pdf in time (for nonlinear models)

How is DA used today in geosciences?

Present-day data-assimilation systems are based on linearizations and state covariances are essential.

4DVar, Representer method (PSAS):

- Gaussian pdf's, solves for posterior mode, needs error covariance of initial state (B matrix), 'no' posterior error covariances

(Ensemble) Kalman filter:

- assumes Gaussian pdf's for the state, approximates posterior mean and covariance, doesn't minimize anything in nonlinear systems, needs inflation and localisation

Combinations of these: hybrid methods (!!!)

Non-linear Data Assimilation

- Metropolis-Hastings
- Langevin sampling
- Hybrid Monte-Carlo
- Particle Filters/Smoothers
- Combinations of MH and PF

All try to sample from the posterior pdf, either the joint-in-time, or the marginal. Only the particle filter/smoother does this sequentially in time.

Nonlinear filtering: Particle filter

$$p(x|y) = \frac{p(y|x)p(x)}{\int p(y|x)p(x) dx}$$

Use ensemble
$$p(x) = \sum_{i=1}^{N} \frac{1}{N} \delta(x - x_i)$$

$$p(x|y) = \sum_{i=1}^{N} w_i \delta(x - x_i)$$

with

$$w_i = \frac{p(y|x_i)}{\sum_j p(y|x_j)}$$

the weights.

What are these weights?

- The weight w_i is the normalised value of the pdf of the observations given model state x_i .
- For Gaussian distributed variables is is given by:

$$w_i \propto p(y|x_i)$$

$$\propto \exp\left[-\frac{1}{2}(y - H(x_i))R^{-1}(y - H(x_i))\right]$$

- One can just calculate this value
- That is all !!!

No explicit need for state covariances

- 3DVar and 4DVar need a good error covariance of the prior state estimate: complicated
- The performance of Ensemble Kalman filters relies on the quality of the sample covariance, forcing artificial inflation and localisation.
- Particle filter doesn't have this problem, but...

The standard particle filter is degenerate for moderate ensemble size in moderate-dimensional systems.

Particle Filter degeneracy: resampling

- With each new set of observations the old weights are multiplied with the new weights.
- Very soon only one particle has all the weight...
- Solution:

Resampling: duplicate high-weight particles and abandon low-weight particles

Standard Particle filter

A simple resampling scheme

1. Put all weights after each other on the unit interval:

- 2. Draw a random number from the uniform distribution over [0,1/N], in this case with 10 members over [0,1/10].
- 3. Put that number on the unit interval: its end point is the first member drawn.
- 4. Add 1/N to the end point: the new end point is our second member. Repeat this until N new members are obtained.

5. In our example we choose m1 2 times, m2 2 times, m3, m4, m5 2 times, m6 and m7.

A closer look at the weights I

Probability space in large-dimensional systems is

'empty': the curse of dimensionality

A closer look at the weights II

Assume particle 1 is at 0.1 standard deviations *s* of M independent observations.

Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

$$w_1 \propto \exp\left[-\frac{1}{2} (y - H(x_i)) R^{-1} (y - H(x_i))\right] = exp(-0.005M)$$

and particle 2 gives

$$w_2 \propto \exp\left[-\frac{1}{2} (y - H(x_i)) R^{-1} (y - H(x_i))\right] = exp(-0.02M)$$

A closer look at the weights III

The ratio of the weights is

$$\frac{w_2}{w_1} = exp(-0.015M)$$

Take M=1000 to find

$$\frac{w_2}{w_1} = exp(-15) \approx 3 \ 10^{-7}$$

Conclusion: the number of independent observations is responsible for the degeneracy in particle filters.

A closer look at the weights IV

 The volume of a hypersphere of radius r in an M dimensional space is

$$V \propto \frac{r^M}{\Gamma(M/2 - 1)}$$

• Taking for the radius $r \approx 3\sigma_y$ we find, using Stirling:

$$V \propto \left[\frac{9\sigma_y}{M/2}\right]^{M/2}$$

So very small indeed.

How can we make particle filters useful?

The joint-in-time prior pdf can be written as:

$$p(x^n, x^{n-1}) = p(x^n | x^{n-1})p(x^{n-1})$$

So the marginal prior pdf at time *n* becomes:

$$p(x^n) = \int p(x^n | x^{n-1}) p(x^{n-1}) \ dx^{n-1}$$

We introduced the transition densities

$$p(x^n|x^{n-1})$$

Meaning of the transition densities

Stochastic model:

$$x^{n} = f(x^{n-1}) + \beta^{n-1}$$

Transition density:

$$p(x^n|x^{n-1}) \propto p(\beta^{n-1})$$

So, draw a sample from the model error pdf, and use that in the stochastic model equations.

For a deterministic model this pdf is a delta function centered around the the deterministic forward step.

For a Gaussian model error we find:

$$p(x^n|x^{n-1}) = N(f(x^{n-1}), Q)$$

Bayes Theorem and the proposal density

Bayes Theorem now becomes:

$$p(x^{n}|y^{n}) = \frac{p(y^{n}|x^{n})p(x^{n})}{p(y)}$$

$$= \frac{p(y^{n}|x^{n})}{p(y)} \int p(x^{n}|x^{n-1})p(x^{n-1}) dx^{n-1}$$

Multiply and divide this expression by a proposal transition density *q*:

$$p(x^n|y^n) = \frac{p(y^n|x^n)}{p(y)} \int \frac{p(x^n|x^{n-1})}{q(x^x|x^{n-1}, y^n)} q(x^n|x^{n-1}, y^n) p(x^{n-1}) dx^{n-1}$$

The magic: the proposal density

We found:

$$p(x^n|y^n) = \frac{p(y^n|x^n)}{p(y)} \int \frac{p(x^n|x^{n-1})}{q(x^x|x^{n-1}, y^n)} q(x^n|x^{n-1}, y^n) p(x^{n-1}) dx^{n-1}$$

Note that the transition pdf q can be conditioned on the future observation y^n .

The trick will be to draw samples from transition density *q* instead of from transition density *p*.

How to use this in practice?

Start with the particle description of the conditional pdf at *n-1* (assuming equal weight particles):

$$p(x^{n-1}) = \frac{1}{N} \sum_{i=1}^{N} \delta(x^{n-1} - x_i^{n-1})$$

Leading to:

$$p(x^n|y^n) = \frac{p(y^n|x^n)}{p(y)} \frac{1}{N} \sum_{i=1}^N \frac{p(x^n|x_i^{n-1})}{q(x^n|x_i^{n-1}, y^n)} q(x^x|x_i^{n-1}, y^n)$$

Practice II

- The standard Particle Filter propagates the original model by drawing from $p(x^n | x^{n-1})$.
- Now we draw from $q(x^n | x^{n-1}, y^n)$, so we propagate the state using a different model.
- This model can be anything, e.g.

$$x^n = g(x^{n-1}, y^n) + \hat{\beta}^n$$

Examples proposal transition density

The proposal transition density is related to a proposed model. In theory, this can be any model!

For instance, add a relaxation term and change random forcing:

$$x^{n} = f(x^{n-1}) + \hat{\beta}^{n-1} + K(y^{n} - H(x^{n-1}))$$

Or, run a 4D-Var on each particle (implicit particle filter). This is a special 4D-Var:

- initial condition is fixed
- model error essential
- needs extra random forcing

Or use the EnKF as proposal density.

Practice III

For each particle at time n-1 draw a sample from the proposal transition density q, to find:

$$p(x^{n}|y^{n}) = \frac{1}{N} \sum_{i=1}^{N} \frac{p(y^{n}|x_{i}^{n})}{p(y)} \frac{p(x_{i}^{n}|x_{i}^{n-1})}{q(x_{i}^{n}|x_{i}^{n-1}, y^{n})} \delta(x^{n} - x_{i}^{n})$$

Which can be rewritten as:

$$p(x^n|y^n) = \sum_{i=1}^N w_i \delta(x^n - x_i^n)$$

with weights

$$w_{i} = \underbrace{\frac{p(y^{n}|x_{i}^{n})}{p(y^{n})} \frac{p(x_{i}^{n}|x_{i}^{n-1})}{q(x_{i}^{n}|x_{i}^{n-1}, y^{n})}}_{q(x_{i}^{n}|x_{i}^{n-1}, y^{n})}$$

Likelihood weight

Proposal weight

How to calculate p/q?

Let's assume that the original model has Gaussian distributed model errors:

$$p(x^{n}|x^{n-1}) = N(f(x^{n-1}), Q)$$

To calculate the value of this term realise it is the probability of moving from x_i^{n-1} to x_i^n . Since x_i^n and x_i^{n-1} are known from the proposed model we can calculate directly:

$$p(x_i^n | x_i^{n-1}) \propto exp\left[-\frac{1}{2} \left(x_i^n - f(x_i^{n-1})\right)^T Q^{-1} \left(x_i^n - f(x_i^{n-1})\right)\right]$$

Example calculation of p

Assume the proposed model is

$$x^{n} = f(x^{n-1}) + \hat{\beta}^{n-1} + K(y^{n} - H(x^{n-1}))$$

Then we find

$$p(x_i^n | x_i^{n-1}) \propto \exp\left[-\frac{1}{2} \left(K(y^n - H(x_i^{n-1})) + \hat{\beta}^n\right)^T Q^{-1} \left(K(y^n - H(x_i^{n-1})) + \hat{\beta}^n\right)\right]$$

We know all the terms, so this can be calculated

And the q term...

The deterministic part of the proposed model is:

$$x^{n} = f(x^{n-1}) + \left[- \left(y^{n} - H(x^{n-1}) \right) \right]$$

So the probability becomes

$$q(x_i^n|x_i^{n-1}, y^n) \propto exp\left[-\frac{1}{2}\hat{\beta}_i^{n-1T}\hat{Q}^{-1}\hat{\beta}_i^{n-1}\right]$$

• We did draw the stochastic terms, so we know what they are, so this term can be calculated too.

The weights

• We can calculate p/q and we can calculate the likelihood so we can calculate the weights:

$$w_i = \frac{p(y^n | x_i^n)}{p(y^n)} \frac{p(x_i^n | x_i^{n-1})}{q(x_i^n | x_i^{n-1}, y^n)}$$

Example: EnKF as proposal

EnKF update:

$$x_i^n = x_i^* + K^e(y^n + \epsilon_i - H(x_i^*))$$

Use model equation:

$$x_i^n = f(x_i^{n-1}) + \beta_i^n + K^e(y^n + \epsilon_i - H(f(x_i^{n-1}) + \beta_i^n))$$

Regroup terms:

$$x_i^n = f(x_i^{n-1}) + K^e(y^n - H(f(x_i^{n-1}))) + (1 - K^e H)\beta_i^n + K^e \epsilon_i$$

Leading to:

$$x_i^n = g(x_i^{n-1}, y^n) + \hat{\beta}_i^n$$

Algorithm

- Generate initial set of particles
- Run proposed model conditioned on next observation
- Accumulate proposal density weights p/q
- Calculate likelihood weights
- Calculate full weights and resample
- Note, the original model is never used directly.

Equivalent-weights I

1. We know:

$$w_i = \frac{p(y^n | x_i^n)}{p(y^n)} \frac{p(x_i^n | x_i^{n-1})}{q(x_i^n | x_i^{n-1}, y^n)}$$

2. Write down expression for each weight ignoring *q* for now:

$$w_i \propto w_i^{rest} \exp \left[-\frac{1}{2} \left(x_i^n - f(x_i^{n-1}) \right)^T Q^{-1} \left(x_i^n - f(x_i^{n-1}) \right) - \frac{1}{2} (y^n - H(x_i^n))^T R^{-1} (y^n - H(x_i^n)) \right]$$

3. When H is linear this is a quadratic function in x_i^n for each particle. Otherwise linearize.

Equivalent-weights II

4. Determine a target weight

Equivalent-weights III

5. Determine corresponding model states, infinite number of solutions.

Determine α at crossing of line with target weight contour in:

$$x_i^n = f(x_i^{n-1}) + \alpha K\left(y^n - Hf(x_i^{n-1})\right)$$

with
$$K = QH^T(HQH^T + R)^{-1}$$

Equivalent-Weights IV

- So, by construction 80% of the particles have equal weight!
- Hence PF not degenerate by construction.
- However, we still need a stochastic move.
 (Why?)

Almost equal weights IV

6. The previous is the deterministic part of the proposal density.

The stochastic part of q should not be Gaussian because we divide by q, so an unlikely value for the random vector $\hat{\beta}_i^{n-1}$ will result in a

huge weight:

$$w_i = \frac{p(y^n | x_i^n)}{p(y^n)} \frac{p(x_i^n | x_i^{n-1})}{q(x_i^n | x_i^{n-1}, y^n)}$$

A uniform density will leave the weights unchanged, but has limited support.

Hence we choose $\hat{\beta}_i^{n-1}$ from a mixture density:

$$p(\hat{\beta}_i^{n-1}) \propto (1-a)U[-b,b] + aN(0,\hat{Q})$$

with a,b,Q small

Almost equal weights V

The full scheme is now:

- Use modified model up to last time step
- Set target weight (e.g. 80%)
- Calculate deterministic moves:

$$x_i^n = f(x_i^{n-1}) + \alpha K\left(y^n - Hf(x_i^{n-1})\right)$$

Determine stochastic move

$$p(\hat{\beta}_i^{n-1}) \propto (1-a)U[-b,b] + aN(0,\hat{Q})$$

 Calculate new weights and resample 'lost' particles

Parameter Estimation I

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

with

$$y = H(\theta) + \epsilon$$

Again, no inversion but a direct point-wise multiplication. But how to do this?

Parameter estimation II

Typically we have a set of observations over time, so we want to know:

$$p(\theta|y^{1:n})$$

The connection between the parameters and the observations is via the model:

$$x_i^n = f(x_i^{n-1}, \theta) + \beta_i^n$$

Parameter estimation III

The likelihood can be written as:

$$p(y^{1:n}|\theta) = \int p(y^{1:n}, x^{0:n}|\theta) \ dx^{0:n}$$

Using the conditional pdf we find:

$$p(y^{1:n}|\theta) = \int p(y^{1:n}|x^{0:n},\theta) \ p(x^{0:n}|\theta) \ dx^{0:n}$$

Exploring that observations depend directly on the state:

$$p(y^{1:n}|\theta) = \int p(y^{1:n}|x^{0:n}) \ p(x^{0:n}|\theta) \ dx^{0:n}$$

Parameter estimation IV

Explore Bayes theorem:

$$p(\theta|y^{1:n}) = \frac{\int p(y^{1:n}|x^{0:n}) \ p(x^{0:n}|\theta) \ dx^{0:n}}{p(y)} p(\theta)$$

So the standard procedure is:

- 1 Draw a θ from its prior pdf
- 2 Draw an initial model state
- 3 Run the model, drawing stochastic terms at each time step
- 4 Calculate the likelihood for this run
- 5 Repeat 2-4 N times and add the likelihoods for this heta
- 6 Repeat 1-5 M times to find weighted ensemble of heta 's

Parameter estimation V

 The particle filters for the model runs can be made more efficient using a proposal density, like the Equivalent-weights Particle Filter.

How to test the accuracy of DA scheme's?

- If the DA problem is linear one can use that the costfunction is a chi-squared variable with M, the number of independent observations, as degrees of freedom. So the value of the costfucntion should lie in
- Other consistency tests for linear DA test relations between the statistics of the forecast and analysis innovations, and the covariances. From linear theory we find relations like:

$$E\left[(x_a - y)(x_a - y)^T\right] = R - HP_aH^T$$

$$E\left[(x_a - y)(x_b - y)^T\right] = R$$

that can be checked.

And nonlinear DA scheme's?

- Compare the ensemble spread with the RMSE in idealised experiments
- One can use other measures, like a rank histogram or talagrand diagram:
 - Take one observation y.
 - Add observation noise to model equivalents $H(x_i)$ and sort them in magnitude.
 - Rank the position of the observation in this sorted ensemble
 - Do this every several assimilation cycles (or over similar independent observations)
 - Produce a histogram of the rankings.

Examples of rank histograms

Ideally the rank histogram is flat: the observation is Indistinguishable from any ensemble member, so any Ensemble member could be responsible for the observations

Under-dispersive ensemble

Over-dispersive ensemble