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Why Data Assimilation

* Prediction
* Model improvement:
- Parameter estimation
- Parameterisation estimation

* Increase our understanding
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Data Assimilation Ingredients

* Prior knowledge, the Stochastic model:

" — f(xn—l) _|_6n—1

e Observations: y”

* Relation between the two: | " = H(2") + €"




Data assimilation: general formulation

/ VT~ ) \\\
velocity
Observation
Bayes theorem:
e o(zly) = p(ylz)p(x)
[\ ’ J pylz)p(x) dx
/,a e(
velocity Solution is pdf!

Posterior NO INVERSION !!1



Parameter estimation:

~ plylo)p(o)

p(0ly) ()

with
y=H(0)+ ¢

Again, no inversion but a direct point-wise multiplication.



Propagation of pdf in time:
Kolmogorov’s equation

Model equation: | 270 — f(xn—l) 4 ﬁn—l

Pdf evolution: Kolmogorov’s equation \\\
(Fokker-Planck equation) 6 3 N
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«OO advection diffusion



Motivation ensemble methods:
‘Efficient’ propagation of pdf in time
(for nonlinear models)
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How is DA used today in geosciences?

Present-day data-assimilation systems are based on
linearizations and state covariances are essential.

4DVar, Representer method (PSAS):

- Gaussian pdf’s , solves for posterior mode, needs error
covariance of initial state (B matrix), ‘no’ posterior error
covariances

(Ensemble) Kalman filter:

- assumes Gaussian pdf’s for the state, approximates posterior
mean and covariance, doesn’t minimize anything in nonlinear
systems, needs inflation and localisation

Combinations of these: hybrid methods (!!!)



Non-linear Data Assimilation

* Metropolis-Hastings

* Langevin sampling

* Hybrid Monte-Carlo

e Particle Filters/Smoothers
 Combinations of MH and PF

All try to sample from the posterior pdf, either the joint-in-time,
or the marginal. Only the particle filter/smoother does this
sequentially in time.



Nonlinear filtering: Particle filter

pla) = 3~ pole — )

_ plylz)p(x)
plaly) = 5 p(ylx)p(x) du
plxly) = Z w;0(x — ;)
with |, — plylei)
Z D p(y|z;)

the weights.




What are these weights?

* The weight w; is the normalised value of the
pdf of the observations given model state ;.

* For Gaussian distributed variables is is given
by:

w; X p(y|$z)
o exp |5 (y— H(x) B (y — H(z:)

* One can just calculate this value
 Thatis all !l



No explicit need for state covariances

 3DVar and 4DVar need a good error
covariance of the prior state estimate:

complicated

* The performance of Ensemble Kalman filters
relies on the quality of the sample covariance,
forcing artificial inflation and localisation.

* Particle filter doesn’t have this problem, but...



Standard Particle filter

The standard particle filter is degenerate for moderate
ensemble size in moderate-dimensional systems.



Particle Filter degeneracy: resampling

e With each new set of observations the old
weights are multiplied with the new weights.

* Very soon only one particle has all the
weight...

e Solution:

Resampling: duplicate high-weight particles
and abandon low-weight particles



Standard Particle filter




A simple resampling scheme

1. Put all weights after each other on the unit interval:

0 | | | | | [ I I | A
w1 w2 w3 w4 wd w6 w7w8 wowv10

2. Draw a random number from the uniform distribution over [0,1/N],
in this case with 10 members over [0,1/10].
3. Put that number on the unit interval: its end point is the first

member drawn.
4. Add 1/N to the end point: the new end point is our second member.
Repeat this until N new members are obtained.

o ( .+ Lt bt b
w1 w2 w3 w4 wd we w7w8 wiw10

5. In our example we choose m1 2 times, m2 2 times, m3, m4,
m5 2 times, m6 and m7.



A closer look at the weights |

Probability space in large-dimensional systems is
‘empty’: the curse of dimensionality
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A closer look at the weights Il

Assume particle 1 is at 0.1 standard deviations s of M
Independent observations.
Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

Wy X exp {—% (y — H(x;)) R (y — H(x))

= exp(—0.005M)

and particle 2 gives

s xexp -1 (= Hw) R (g — Ha)

5 = exp(—0.02M)




A closer look at the weights Il

The ratio of the weights is

2 _ eap(—0.015M)
wq

Take M=1000 to find

2 exp(—15) ~ 310"
w1

Conclusion: the number of independent observations is
responsible for the degeneracy in particle filters.



A closer look at the weights IV

* The volume of a hypersphere of radius r in an
M dimensional space is

T’M

(M/2—-1)

y
T

* Taking for the radius r ~ 30, we find, using
Stirling:

—90y_M/2

y
> M2

* So very small indeed.



How can we make particle filters useful?

The joint-in-time prior pdf can be written as:

n—l) n—l)

p(a™, x — p(x"\m”_l)p(x

So the marginal prior pdf at time n becomes:

pa") = [ pla"la" " p(a" ") da!

We introduced the transition densities

p(a”™|z"")




Meaning of the transition densities

Stochastic model: — f(ZCn_l) 4 677,—1

Transition density: p(xn |xn—1) x p(ﬁn—l)

So, draw a sample from the model error pdf, and use that in
the stochastic model equations.

For a deterministic model this pdf is a delta function centered
around the the deterministic forward step.

For a Gaussian model error we find:

p(a"a" ) = N ("), Q)




Bayes Theorem and the proposal density

Bayes Theorem now becomes:

p(y"|z")p(x")
p(y)

p(y"|z") n| .n—1 n—1 n—1
o el () da

p(z"y") =

Multiply and divide this expression by a proposal transition
density q:

plz"ly") = p(]yJZg‘/a);n) / q(l;(f’;’jnl_’y)n)q(xnmnl’ y")p(x" ) da




The magic: the proposal density

We found:

pla"ly") = p(i@fﬂ) / qé(f‘;[in; y)n)(J(w”I:v”‘l, y")p(x" ) da

Note that the transition pdf g can be conditioned on the future
observation y .

The trick will be to draw samples from transition density g
instead of from transition density p.




How to use this in practice?

Start with the particle description of the conditional pdf at n-17
(assuming equal weight particles):

1 N
pa"™ ) == o0(@" T —aih)
N 1=1

Leading to:
n|.n p(yn‘wn) 1 al p(xn‘z?—l) x| . .n—1 n
p(x"|y") = — q(z* |z, y")
p(y) N;C](mn‘xi layn)




Practice ||

* The standard Particle Filter propagates the
original model by drawing from p(x" [x").

* Now we draw from g(x"[x"1y"), so we
propagate the state using a different model.

* This model can be anything, e.g.



Examples proposal transition density

The proposal transition density is related to a proposed model.
In theory, this can be any model!

For instance, add a relaxation term and change random forcing:

" = )+ K (v - H )

Or, run a 4D-Var on each particle (implicit particle filter).
This is a special 4D-Var:

- initial condition is fixed

- model error essential

- needs extra random forcing

Or use the EnKF as proposal density.



Practice |l

For each particle at time n-1 draw a sample from the proposal
transition density g, to find:

”\fL‘ ) plaj|a] ™)
p(z"[y") T 0" — o)
; (xz ‘xz 17/yn)
Which can be rewritten as: p(x"|y") Z w;o(x" — )

g

? “\x >\
’ /

/

Likelihood welght Proposal weight




How to calculate p/qg?

Let’'s assume that the original model has Gaussian distributed
model errors:

p("a" ) = N ("), Q)

To calculate the value of this term realise it is the probability of
moving from x/7 to x/. Since x/" and x/-' are known from the
proposed model we can calculate directly:

L n—1\\' A1 (..n n—1

(|} ~") o eap




Example calculation of p

 Assume the proposed model is

= [+ K (Y - Ha )

* Then we find

n

p(% ‘xz

n—l)

ocexp[

_% (K(" — H@) +57) Q7 (K(y" — Ha ™) + 57)

|

* We know all the terms, so this can be calculated




And the g term...

* The deterministic part of the proposed model is:

o= f )+ K (yt - H")

* So the probability becomes

- BTG G

 We did draw the stochastic terms, so we know
what they are, so this term can be calculated too.

gzl y") o< exp




The weights

* We can calculate p/g and we can calculate the
likelihood so we can calculate the weights:

Cop(y"al)  p(al|aft)
p(y") qlar|zi= ym)

?




Example: EnKF as proposal
EnKF update:

vy = + K°(y" + & — H(x7))

2

Use model equation:

' = f(a" )+ B+ + K€ (y” +e6—H ((f(zv?_l) + ﬁ?))

Regroup terms:

v = fp )+ K (y" = H (f@)) + (1= KH)B + K

Leading to:

r) = gzt y") + 3"




Algorithm

Generate initial set of particles

Run proposed model conditioned on next
observation

Accumulate proposal density weights p/q
Calculate likelihood weights

Calculate full weights and resample

Note, the original model is never used directly.



Particle filter with
proposal transition
density I




Equivalent-weights |

1. We know:

p(y"|x?)  plaiap™)
p(y™) qla?|af ™" y)

2. Write down expression for each weight ignoring g for now:

7: —

rest 1

e exp |5 (or = far) Q7 (ar = flar )
S~ HE) R H ()

w; X W

3. When H is linear this is a quadratic function in x/
for each particle. Otherwise linearize.




Equivalent-weights Il

4. Determine a target weight

— 10g w;

Target weight




Equivalent-weights Il|

5. Determine corresponding model states, infinite number of
solutions.

target weight

weight contour

Determine «v at crossing of line with target weight contour in:
) = fal7) +aK (y" — Hf(a]™))

with K = QH"(HQH" + R)™*




Equivalent-Weights IV

* So, by construction 80% of the particles have
equal weight!

* Hence PF not degenerate by construction.

* However, we still need a stochastic move.
(Why?)



Almost equal weights IV

6. The previous is the deterministic part of the proposal density.

The stochastic part of g should not be Gaussian because we divide
by g, so an unlikely value for the random vector 3 'will resultin a
huge weight:

_p("=7)  plaflai)
p(y™) qlap|a;™" y)

A uniform density will leave the weights unchanged, but has limited
support.

Wy

Hence we choose 37"~ 'from a mixture density:

~ X with

p(ﬁf—l) X (1 o CL)U[—b, b] T aN(Oa Q) a,b,Q small




Almost equal weights V

The full scheme is now:

Use modified model up to last time step
Set target weight (e.g. 80%)

Calculate deterministic moves:

) = flar ) +aK (y — Hf(a™))
Determine stochastic move

A

p(37~") o< (1 — a)U[=b,b] + aN(0, Q)
Calculate new weights and resample ‘lost’
particles




Parameter Estimation |

~ plylo)p(o)

p(0ly) ()

with
y=H(0)+ ¢

Again, no inversion but a direct point-wise multiplication.
But how to do this?



Parameter estimation |l

Typically we have a set of observations over
time, so we want to know:

p(0]y*"")

The connection between the parameters and
the observations is via the model:

v = f(ai,0) + 57




Parameter estimation Il

The likelihood can be written as:

Using the conditional pdf we find:

p(y"10) = [ ply"|a"",6) p(a""(6) da”

Exploring that observations depend directly on the state:

p(y1n|8) _ /p(ylzn’x():n) p(x0n|0) dl’o




Parameter estimation |V

Explore Bayes theorem:

S p(y™"]a™") p(a™"|0) da™
p(y)

p(Oly™") = p(0)

So the standard procedure is:

Draw a ! from its prior pdf

Draw an initial model state

Run the model, drawing stochastic terms at each time step
Calculate the likelihood for this run

Repeat 2-4 N times and add the likelihoods for this v

Repeat 1-5 M times to find weighted ensemble of VA

OO, WN -



Parameter estimation V

* The particle filters for the model runs can be
made more efficient using a proposal density,
like the Equivalent-weights Particle Filter.



How to test the accuracy of DA scheme’s?

If the DA problem is linear one can use that the costfunction is
a chi-squared variable with M, the number of independent
observations, as degrees of freedom. So the value of the

costfucntion should lie in
M+ M

Other consistency tests for linear DA test relations between
the statistics of the forecast and analysis innovations, and the
covariances. From linear theory we find relations like:

L [(xa —y) (@ — y)T} — R—HP,H"

B (v —y)(w —y)"| =R
that can be checked.




And nonlinear DA scheme’s?

Compare the ensemble spread with the RMSE in idealised
experiments

One can use other measures, like a rank histogram or
talagrand diagram:

- Take one observation y.

- Add observation noise to model equivalents H(x;) and sort
them in magnitude.

- Rank the position of the observation in this sorted ensemble

- Do this every several assimilation cycles (or over similar
independent observations)

- Produce a histogram of the rankings.

X

4 2 7 8 31 9 10 6 5 —
variable




Examples of rank histograms

Ideally the rank histogram is flat: the observation is
Indistinguishable from any ensemble member, so any
Ensemble member could be responsible for the observations
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