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How do we process new data? 

♬



A process description 

•  Prior knowledge, from a model, a cat  

•  Observations, the dog  

•  Posterior knowledge, improvement of 
the model, the dog that has eaten the 
cat 



What is missing? 

Uncertainty !!!
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A mathematical description: 
 probability density functions 



Intermezzo: conditional pdf 

Conditional pdf:

Similarly:

Combine:



Intermezzo: conditional pdf 

We can use:

Bayes Theorem



The model pdf p(x) 
p (u(x1), u(x2), T(x3), … )

u(x1)

u(x2)

T(x3)



Observations 
p(y|x) 

•  In situ observations:  
    irregular in space and 

time e.g. sparse 
hydrographic 
observations,  

•  Satellite observations: 
indirect  

     e.g. of  the sea-surface 



The solu)on is a pdf! 

Bayes theorem: 

Data assimilation: general formulation 



Filters and smoothers 

Time

Filter: solve 3D  
problem sequentially 

Smoother: solve 4D 
problem in specific 
time window all at  
once 

Time

X



The Gaussian assumption 

Prior pdf: multivariate Gaussian:

Likelihood: multivariate Gaussian



(Ensemble) Kalman Filter I 

Use Gaussianity in Bayes at a specific time:

Multiplication:

Complete the squares to find again a Gaussian (only for linear H !!!):



(Ensemble) Kalman Filter III 

Both lead to the Kalman filter equations, which are just the least
squares solutions (best linear unbiased estimator, BLUE): 

Two possibilities to find the expressions for the mean and covariance:
1)  Completing the squares
2)  Assume solution is linear combination of model and observations.

innovationweightinginfluence regionK the Kalman Gain 



Spatial correlation of SSH�
and SST in the Indian Ocean

x

x

Haugen and Evensen, 2002

The error covariance:�

Tells us how model variables 
co-vary. 

In the Kalman filter this comes
in via the BHT term:



Kalman filters in practice: Ensembles 
How to propagate (or even store) the covariance matrix?

Ensemble Kalman Filter
EnKF, ETKF, EAKF, …



Ensemble Kalman Filter: the update 

Ensemble perturbation matrix

to represent prior covariance as:

Write posterior ensemble perturbations as:

Use                                     to find  

with



A variational method looks for the most probable state, which is
the maximum of this posterior pdf also called the mode.

Instead of looking for the maximum one solves for the minimum
of a so-called costfunction.

The pdf can be rewritten as 

in which 

Find min J from variational derivative: 
J is costfunction or penalty function 

Variational methods 



Gradient descent methods: 
Gauss-Newton iterations 

J

model state xb

123 4 561’



4DVar 
There is an interesting extension to this formulation to a smoother. 

Time

Filter:
Solve a 3D problem
at each observation 
time.

4DVar:
Solve a 3D problem 
at the beginning of 
the time window using
all observations.
Note we get a new full
4D solution!



4DVar: the dynamical model 

The dynamical model is denoted by M:

Using the model operator twice brings us to the next time step: 

And some short-hand notation:



4DVar: the costfunction 
The total costfunction that we have to minimize now becomes:

in which the measurement operator Hi contains the forward model:  

This nonlinear costfunction is minimised iteratively.



4DVar: the adjoint 
The solution to the linear iterates can be written as:

in which H now contains the model equations.

Note that HT contains the adjoint model equations, running from
end of the time window to the initial time.



Present-day data-assimilation methods 
for NWP: 

•  EnKF:

•  4DVar:

•  Hybrid methods: Combine the best of both.
•  Nonlinear data-assimilation methods…

x

x



Nonlinear filtering: Particle filter 

Use ensemble

with the weights.



What are these weights? 
•  The weight      is the normalised value of the pdf of 

the observations given model state    . 
•  For Gaussian distributed variables is is given by: 

•  One can just calculate this value 
•  That is all !!! 

•    Or is it? More needed for high-dimensional problems… 



Summary and outlook 

•  We know how to formulate the data assimilation problem 
      using Bayes Theorem.
•  We have derived the Kalman Filter and shown that it is
the best linear unbiased estimator (BLUE).

•  We derived 3D and 4DVar and discussed some of their 
properties.

•  We looked at a fully nonlinear method, the particle filter.  
•  This forms the basis for what is to come the rest of the 

week!

ENJOY


