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Kalman Filter and Extended 
Kalman Filter 
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Evolution of the uncertainty 

In 3DVar, we considered the 
background covariance B to be 
fixed or static. In a way, it 
characterized the climatology 
of the system.  
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But from analysis to 
analysis, the background 
covariance can vary, it is 
flow-dependent.  

 

How do we estimate this? 

 

 

 

 

 



The Kalman Filter 
Consider a system with linear evolution, linear observation operator, 
and Gaussian errors.  

 

 

 

 

 

In this case, it is enough to estimate the state of the mean and 
covariance of the system (closure at the 2nd moment).  
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The Kalman Filter 
The filter has 2 steps. 

 

Forecast 

 

 

 

Analysis 

6 

QFFPP

xFx









Ta

t

b

t

a

t

b

t

1

1

 
  b

tt

a

t

b

ttt

b

t

a

t

PHKIP

xHyKxx





 
1

1









RHP

RHHPHPK

Ta

t

Tb

t

Tb

tt

Kalman gain 



The Extended Kalman Filter 
When the dynamics is nonlinear, we use a 1st order Taylor expansion.  

 

Forecast 

 

 

Analysis 
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The accuracy of the linear approximation depends on the length of the 
forecast window. 



Handling P 

Both the KF and EKF 
require computations on 
the covariance matrix P. 

 

In NWP applications: 

 

 

 

 

It is not feasible to 
constantly compute it 
and store it! 
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Ensemble Kalman Filter 
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The Ensemble Kalman Filter is a Monte-Carlo implementation of the KF. 
Study a family of M solutions, which we call ensemble (Evensen, 1994).    

Ensemble Kalman Filter 
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We use the sample estimators of the mean and covariance for the 
KF analysis step.  
 
 
 
 
Where we define an ensemble of perturbations: 

Ensemble Kalman Filter 
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EnKF features 

• Unlike the EKF, the EnKF makes use of the full 
nonlinear model: more accurate determination of 
error growth (and of error saturation). 

 

• The Kalman gain K is computed without the need to 
calculate Pb. This is particularly advantageous when 
observations are processed serially. 

 

• No need to linearize the observation operator h. 
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EnKF features 

• Each ensemble member can be propagated forward in 
time independently: highly parallel algorithm. 

 

• Model error term can be included as a perturbation of 
the deterministic forecast. 

 

 

So, how does it work? 



To assimilate the mean and covariance, we just follow the KF 
equations. 

 

 

 

 

 

However, how to assimilate the individual ensemble members is 
not trivial. 

 

Ensemble Kalman Filter 

14 

a
x

a
P

b
x

b
P

background analysis 

a
Xb

X Not unique…, since 
the square root of a 
matrix is not 
uniquely defined. 

 
  bTa

bba

PHKIP

xHyKxx







Stochastic (Burgers et al., 1996; Houtekamer and Mitchell, 1998) 

        Apply the KF equations to each ensemble member. 

        Requires perturbed observations for each member. 

 

 

Deterministic implementation: ensemble square root filters 
(Tippet et al., 2003). 

        Serial EnSRF (Whitaker and Hamill, 2002) 

        Ensemble Adjustment Kalman Filter (Anderson, 2001) 

        Ensemble Transform Kalman Filter (Bishop et al, 2001), 
 LETKF (Hunt et al, 2007) 

 

Ensemble Kalman Filter: families 
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Stochastic EnKF 
Having our ensemble: 

 

 

 

 

 

Why do we need to perturb observations? To ensure correct 
analysis covariance. 

 

Note that we fulfill the KF covariance equation statistically. 
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Deterministic EnKF 
Having our ensemble: 
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ETKF 
Having our ensemble: 
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The transform matrix is relatively 
small, since M~10-100. 
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This is the analysis covariance 
computed in the ensemble 
space, which is low 
dimensional. 



UMD Chaos-Weather group meeting 
09/12/2011 
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ETKF in a simple univariate model 
  0;11  truett xxx

Time evolution 

Only analysis 



ETKF in Lorenz 1963 with 3 members 
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Some members 
miss the regime 
transition, but 
this is corrected. 



Implementation aspects 
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There is always sampling noise in the estimators, this reduces as 
the ensemble size increases. 

Example with a univariate Gaussian distribution. 

Sampling 



23 

Two effects of finite sample size: 

 - Underestimation of sample covariance. 

 - Spurious long-range correlations.  

 

Fixes: 

 - Covariance inflation 

 - Covariance localization 

 

Also, the sample covariance matrix is singular for N>M… 

 

How many members would we need? At least as many as the 
number of unstable directions of error growth? 

Sampling 



Lorenz 1963 

Covariance inflation and 
performance.  
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Covariance localization 

• When forecast error covariance is mispecified (e.g., due to 
neglecting model error, or when M << N), it may include 
spurious correlations between very distant grid points. 

 

• A common solution is to multiply each Pb element by an 
appropriate weight that reduces long-distance correlations. 

 

• This ensures that only the components of Pb believed to 
represent the corresponding components of Pb accurately are 
retained. 
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Covariance localization: an example 

(a) Pb
e (N=25) 

 

 

(b) Pb
e (N=200) 

 

(c) Correlation function with 
compact support 

 

(d) localized Pf
e (N=25) 

From Fig. 6.4 

of Hamill, 2006 



Localization 
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Cut-off    Gaspari-Cohn 

b
PCExample using Lorenz 1996 



Localization 
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Cut off    Gaspari-Cohn 

 Tb
HPC

Example using Lorenz 1996, observing every other variable.  



Gridpoint R-localization: LETKF 
We go gridpoint by gridpoint and perform the update using 
observations within a radius of influence.  

29 Image courtesy of Steven Greybush. 



Experiments with Lorenz 1996 and 40 variables, observing every 
2 time steps and every other variable.  

Combined effects of inflation and localization 
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Parameter estimation 
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Extending the state vector 
The state vector can be extended with the parameters of the 
model. We can use the covariance to update values of poorly 
known parameters.  
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This ‘cross-covariance’ carries information from state 
variables to parameters. Remember: parameters are not 
observables.  

 

There are no dynamics for the parameters, one can perturb 
them during the forecast. 



Example 
Using Lorenz 1963, estimate the values of the state variables and 
the parameters. 
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Hybrid data assimilation 
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Combining the best of 2 worlds 

A static covariance is full 
rank, it is invertible, it 
gives idea of the 
climatology.  
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Flow/State 
Dependence Climatology 

An ensemble covariance 
has information of the 
flow, but it can be singular 
and contains sampling 
errors.   

  ensemblestatic BBB   1 Compromise? 

There are several ways to implement this. 



bf & be: weighting coefficients for fixed and ensemble covariance respectively 

xt’: (total increment) sum of increment from fixed/static B (xf’) and ensemble B  

k: extended control variable;         :ensemble perturbations 

 - analogous to the weights in the LETKF formulation 

 

L: correlation matrix [effectively the localization of ensemble perturbations] 36 

Extended control variable (NCEP) 
• Incorporate ensemble perturbations directly into variational 

cost function through extended control variable 
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Single observation experiment 
3DVar, EnKF and Hybrid techniques using GFS. 
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Image 
courtesy of 
Daryl Kleist, 
NOAA. 



Some words on ensembles 

Nowadays, NWP does ensemble forecasts to quantify 
uncertainty. They are readily available for DA. 

 

Sample covariance has information about the errors of the day, it 
‘knows’ about the flow. Nonetheless, it has sampling error  and 
can be singular. 

 

Parameter estimation can be implemented in a straightforward 
fashion. 

 

EnKFs do not require adjoints. 
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