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Kalman Filter and Extended
Kalman Filter



Evolution of the uncertainty

In 3DVar, we considered the ~
background covariance B to be /
fixed or static. In a way, it 7
characterized the climatology .
of the system.

But from analysis to
analysis, the background
2 covariance can vary, it is
! flow-dependent.

How do we estimate this?



The Kalman Filter

Consider a system with linear evolution, linear observation operator,

and Gaussian errors.
X, =Fx_,+w, w~N(0,Q) y.=h(x,)+v, v~N(O,R)

FeRVN xeR" yeR"

COV[W, V]: 0 —> Independence of model and
observational error.

In this case, it is enough to estimate the state of the mean and
covariance of the system (closure at the 2" moment).

E[x]=x Cov|x|=P



The Kalman Filter

The filter has 2 steps.

Forecast <

Analysis <

FX2,
FP2F" +Q

=%+ K, [y, - HX")

=(1-KH)P’ I

Kalman gain
K,=PPHT (HP’H" +R)"
— PtaHT R—l



The Extended Kalman Filter

When the glynamics is nonlinear, we use a 1%t order Taylor expansion.
ob ¢ (<a Kalman gain
X = f(x2,) 8

< . . . -1
Forecast P’ =F'P? FT+Q K, =P’H" (H P H" +R)
. — PtaHlT R—l
JR=RAKy -HR) i . ohix)
Analysis P? = (I - K’ H')Ptb X Ly, X o
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time

The accuracy of the linear approximation depends on the length of the
forecast window.



Handling P

Meteorological

Both the KF and EKF variaple g
require computations on l, ongtu el tud
the covariance matrix P. — l atitude :
) v l vertical
! 4 v level
In NWP applications: ’ iy
A,
XE%N,N"’].OS ) | P2
NxN W ¢,

It is not feasible to
constantly compute it Ve
and store it!
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Ensemble Kalman Filter



Ensemble Kalman Filter

The Ensemble Kalman Filter is a Monte-Carlo implementation of the KF.
Study a family of M solutions, which we call ensemble (Evensen, 1994).
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Ensemble Kalman Filter

X:[Xllle"'|XM]emNXM

KF analysis step. / /
1 A

)‘(:iix P=——_XX'
M m=1 "

Where we define an ensemble of perturbations:

X =[x, =[x, = X[+ xyy ~X] e R



EnKF features

* Unlike the EKF, the EnKF makes use of the full
nonlinear model: more accurate determination of
error growth (and of error saturation).

* The Kalman gain K is computed without the need to
calculate P. This is particularly advantageous when
observations are processed serially.

* No need to linearize the observation operator h.
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EnKF features

* Each ensemble member can be propagated forward in
time independently: highly parallel algorithm.

 Model error term can be included as a perturbation of
the deterministic forecast.

So, how does it work?
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Ensemble Kalman Filter

To assimilate the mean and covariance, we just follow the KF
equations.

background analysis

x* =X° + K(y - Hx")
Pe=(I-K H" Jp’

a

X

However, how to assimilate the individual ensemble members is
not trivial.

Not unique..., sinc
the square root of a
matrix is not

uniquely defined.
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Ensemble Kalman Filter: families

Stochastic (Burgers et al., 1996; Houtekamer and Mitchell, 1998)
Apply the KF equations to each ensemble member.
Requires perturbed observations for each member.

Deterministic implementation: ensemble square root filters
(Tippet et al., 2003).

Serial EnSRF (Whitaker and Hamill, 2002)
Ensemble Adjustment Kalman Filter (Anderson, 2001)

Ensemble Transform Kalman Filter (Bishop et al, 2001),
LETKF (Hunt et al, 2007)



Stochastic EnKF

Having our ensemble: X =[x, |X, || X,, | € RV

X2 =x2 +K(y, —Hx? )

Yo=Y+, Mn~NOR)

Why do we need to perturb observations? To ensure correct
analysis covariance.

Note that we fulfill the KF covariance equation statistically.



Deterministic EnKF

Having our ensemble: X =%, [ X, || X,y ] € RVM
x* =%X°+ Ky —Hx")
P2 =(I-KH)P"

X?* =52X® ——  EAKF
X*=X'T* ——  ETKF
This transformation has to

respect the KF covariance
equation.



ETKF

Having our ensemble:

-I-a c %Mxl\/l

>"<a _ >"<b-|—a
\The transform matrix is relatively

small, since M~10-100.

T2 =C(1+T)"*CT =((M —1)p* )"

\ J

\ This is the analysis covariance
computed in the ensemble
; space, which is low
b -1 b . .
crc :eig[<HX )MR 1(HX )j dimensional.




ETKF in a simple univariate model

Xt+1 — (1+A)Xt’ Xtrue — O

<—— Time evolution

45

15

* observations
= background/analysis
05

2
-3

<€—— Only analysis

[HIHI
JIIH]
I
BRI
IR
2000
Y
[N
[
VI
NN
BN
AN
AN
T
[T
JHIHI
JIHTHIN
e
SN
T

| | | | | | | | | | | | | | | | | | |
2 3 4 5 <] 7 8 a i0 11 12 13 14 15 16 17 18 19 20

19

1

0

o™ — o -
senjea a|quasua

o™
v

-3

assimilation cycle



ETKF in Lorenz 1963 with 3 members
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Implementation aspects



estimated mean
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Sampling

There is always sampling noise in the estimators, this reduces as

the ensemble size increases.

Example with a univariate Gaussian distribution.

Effect of sample size in the estimation of the mean, L="0
300 samples considered
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Sampling

Two effects of finite sample size:
- Underestimation of sample covariance.
- Spurious long-range correlations.

Fixes:
- Covariance inflation
- Covariance localization

Also, the sample covariance matrix is singular for N>M...

How many members would we need? At least as many as the
number of unstable directions of error growth?
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Covariance inflation and
performance.

orenz 1963

analysis RMSE (averaged over 10° analysis cycles)
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Covariance localization

 When forecast error covariance is mispecified (e.g., due to
neglecting model error, or when M << N), it may include
spurious correlations between very distant grid points.

* A common solution is to multiply each P° element by an
appropriate weight that reduces long-distance correlations.

* This ensures that only the components of P° believed to
represent the corresponding components of P® accurately are
retained.
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Covariance localization: an example

(a) Correlations in P, 25—member ensemble
(_ —

(a) PP, (N=25)

(b) Pb_ (N=200)

(c) Correlation function with
compact support

(d) localized P, (N=25)

From Fig. 6.4
of Hamill, 2006




observations

Localization

Example using Lorenz 1996
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observations

Localization  c.(p*H")

Example using Lorenz 1996, observing every other variable.

Cut off Gaspari-Cohn
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Gridpoint R-localization: LETKF

We go gridpoint by gridpoint and perform the update using
observations within a radius of influence.

**—_ Observdgtions

%0 5
Model
rid Point\s‘

B el

Image courtesy of Steven Greybush.
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Combined effects of inflation and localization

Experiments with Lorenz 1996 and 40 variables, observing every

2 time steps and every other variable.
RMSE LETKF
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Parameter estimation



Extending the state vector

The state vector can be extended with the parameters of the
model. We can use the covariance to update values of poorly

known parameters. X, = f(xt_l;O)
- ) Cov(x,0)
3 =|... B ,O) COV(G,G)
0

This ‘cross-covariance’ carries information from state
variables to parameters. Remember: parameters are not
observables.

There are no dynamics for the parameters, one can perturb
them during the forecast.



Example
Using Lorenz 1963, estimate the values of the state variables and
the parameters.
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Hybrid data assimilation



Combining the best of 2 worlds

A static covariance is full An ensemble covariance
rank, it is invertible, it has information of the
gives idea of the flow, but it can be singular
climatology. and contains sampling
errors.
T —
e N~~~
> Flow/State
Climatology Dependence

B = aBstatic + (1_ a)Bensemble > Compromise?

There are several ways to implement this.
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Extended control variable (NCEP)

* Incorporate ensemble perturbations directly into variational
cost function through extended control variable

’ 1 5 Ty -1
(Xf’ ) P ( ) (Xf)+15e§2(“n) L (“n)'+
L(Hx —y TR (Hx, —y)
E i Y i Y
N n
X! =X +Z(a”o X, )
n=1
S & [B.: weighting coefficients for fixed and ensemble covariance respectively

X, : (total increment) sum of mcrement from fixed/static B (x;’) and ensemble B
a,: extended control variable; X . :ensemble perturbations

- analogous to the weights in the LETKF formulation

L: correlation matrix [effectively the localization of ensemble perturbations] .,



Single observation experiment
3DVar, EnKF and Hybrid techniques using GFS.

Image
courtesy of
Daryl Kleist,
NOAA.
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Single 850mb Tv observation (1K O-F, 1K error)



Some words on ensembles

Nowadays, NWP does ensemble forecasts to quantify
uncertainty. They are readily available for DA.

Sample covariance has information about the errors of the day, it
‘knows’ about the flow. Nonetheless, it has sampling error and
can be singular.

Parameter estimation can be implemented in a straightforward
fashion.

EnKFs do not require adjoints.



