## Sequential data assimilation for subsurface flow modeling in civil engineering

### Shinya Yamamoto Shimizu Corporation





Roles of subsurface flow analysis in civil engineering

- > Impact assessment of the construction in design phase
- Regular monitoring in operation and maintenance
- Safety assessment with long-term forecast for geological nuclear waste disposal



Geological disposal of radioactive waste



Groundwater contamination at Fukushima nuclear power plant

2

## Difficulties in the subsurface flow simulation

We have carried out deterministic simulation under huge uncertainties.

- Sparse observations
- Geological heterogeneity and discontinuity
- Incomplete knowledge about hydraulic parameters and boundary conditions

## Objectives

- Estimate the hydraulic parameters that can represent the current state of subsurface flow.
- Construct the reliable subsurface flow model for forecasting

#### Our solution : sequential data assimilation

- Efficient use of observations
- Easy implementation
- Online method

## Sequential-based data assimilation methods

- Particle Filter
  - No assumption
  - Very easy implementation
  - Expensive computation cost
- Ensemble Kalman Filter (EnKF)
  - Relatively small ensemble size
  - Gaussian assumption

#### **Versatile PF or Efficient EnKF ?**

#### Numerical experiments

Application to an actual full-scale model

Step1: Twin experiments with synthetic data

- Evaluate the performance of PF and EnKF
- Identify the issues of the data assimilation method

Step2: Assimilation test using real observation (in progress)

• Identify the issues of the model and observations





Kikuma underground oil storage

#### Saturated-unsaturated subsurface flow model equation

$$\frac{\partial}{\partial x} \left( K \frac{\partial h}{\partial x} \right) = (C + \beta S_s) \frac{\partial h}{\partial t}$$

$$Discretize in time using \quad \frac{\partial h}{\partial t} \approx \frac{h_r - h_{r-1}}{\Delta t}$$

$$h_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right) \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \left( K \frac{\partial}{\partial x} \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \right\} h_{r-1}$$

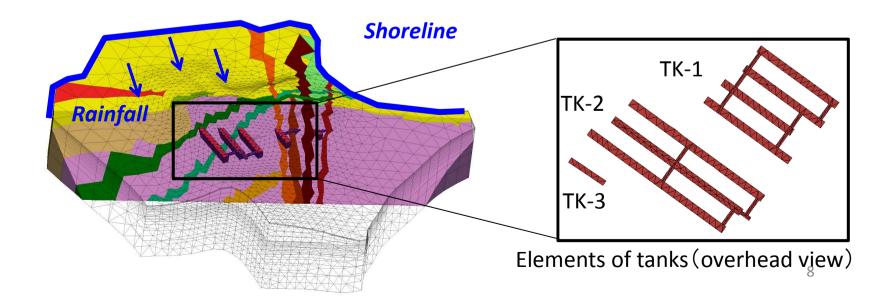
$$k_r = \left\{ 1 + \frac{\Delta t}{C + \beta S_s} \frac{\partial}{\partial x} \right\} h_{r-1}$$

$$k_r = \left\{ 1 + \frac{\Delta t}$$

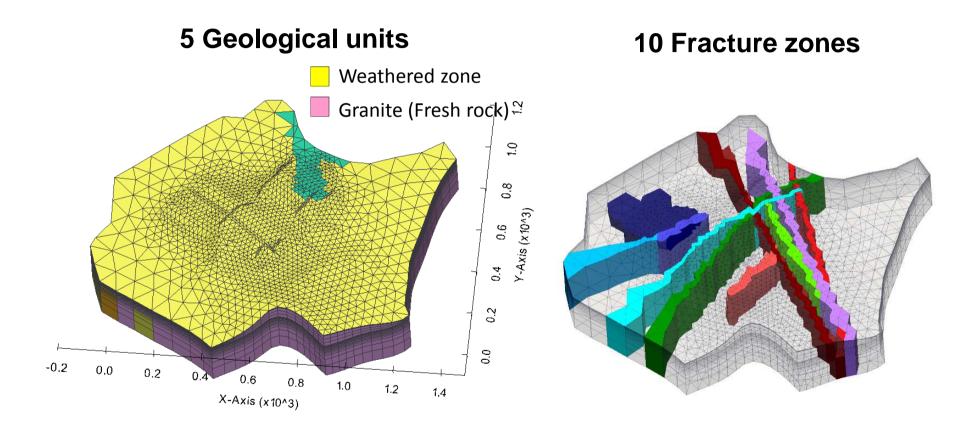
7

## Summary of subsurface flow simulation

| Solver              | Finite Element Method                                                                                                                |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Dimension           | 34,000 nodes 50,000 elements                                                                                                         |  |
| Boundary conditions | <ul> <li>Water seal pressure</li> <li>Internal tank pressure (Oil level)</li> <li>Groundwater recharge</li> <li>Shoreline</li> </ul> |  |
| Initial condition   | Use the result of static analysis                                                                                                    |  |



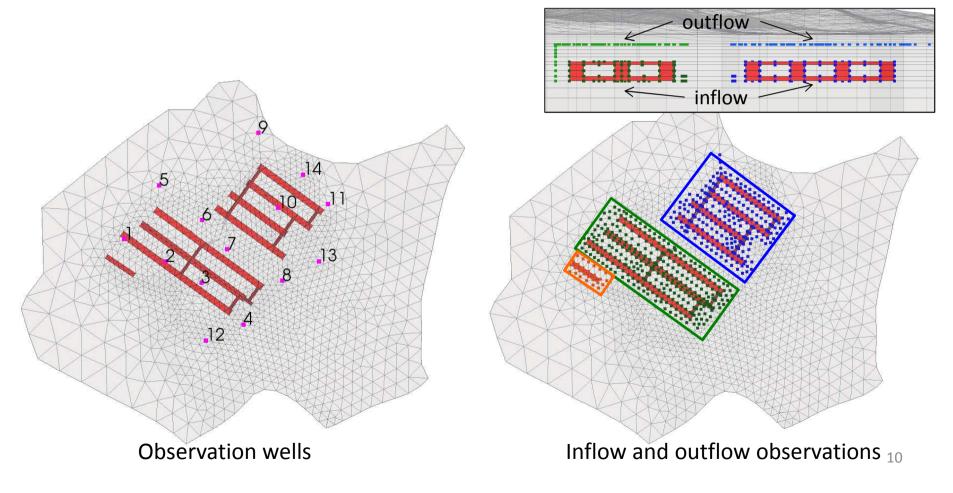
## Geology



#### We estimate 15 hydraulic parameters

#### Observations

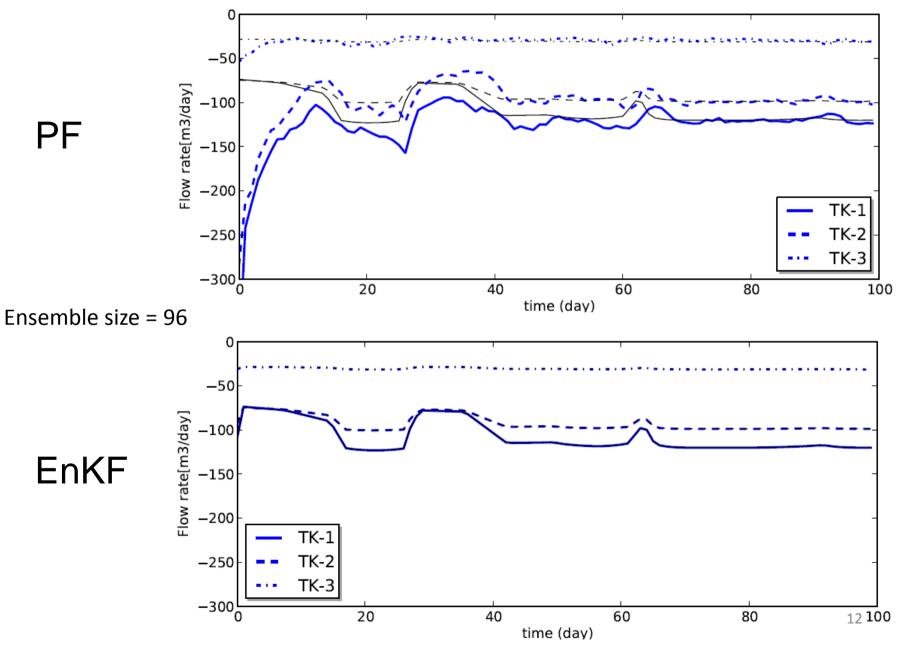
- Groundwater level at 14 boreholes
- Inflow and outflow volumes around 3 oil tanks (total 6 observations)



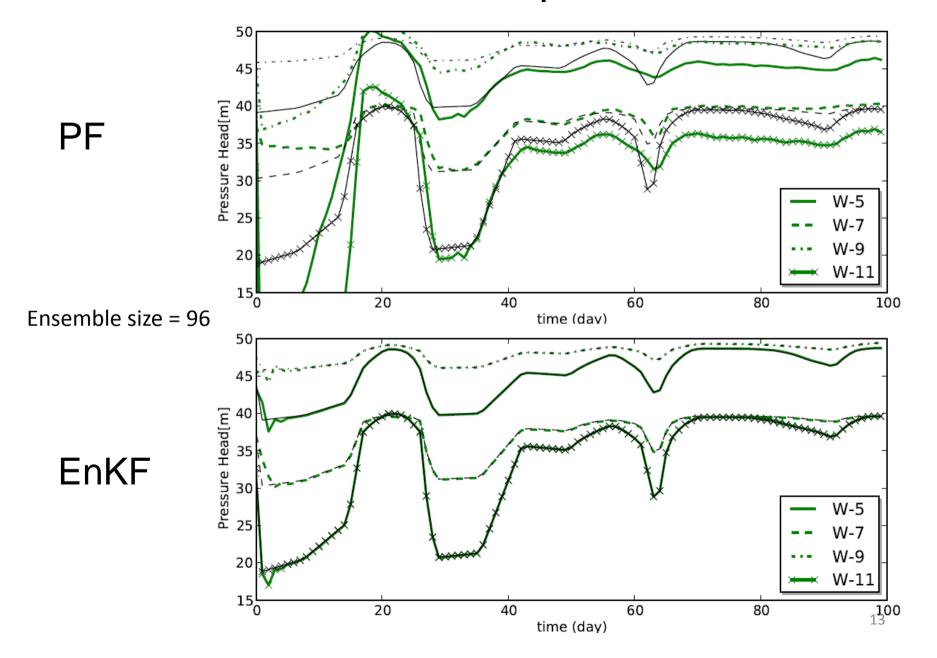
## Summary of Condition of data assimilation

|                                   | PF (SIR)                                                                                                                                                           | EnKF (PO) |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Estimated parameter               | 15 permeability parameters $log(K)$                                                                                                                                |           |
| Observations                      | 20 observations (Pressure head and flow volume)                                                                                                                    |           |
| State vector                      | $\mathbf{x} = (h_1, \dots, h_{Nn}, Q_1, \dots, Q_{Nn}, \text{Log}(K)_1, \dots, \text{Log}(K)_{15})^T$<br>h: Pressure head, $Q$ : Flow rate, $Nn$ : number of nodes |           |
| System noise                      | $\log(K_{t,j}) = \log(K_{t-1,j}) + v_{t,j}$ $v_{t,j} \sim N(0,\sigma)$                                                                                             | None      |
| Observation noise                 | $N(0,\sigma_j^{o})$                                                                                                                                                |           |
| Initial distribution of<br>log(K) | Geological unit : $N(-4, \sigma_j^{\text{ini}})$<br>Fracture zone : $N(-2, \sigma_j^{\text{ini}})$                                                                 |           |

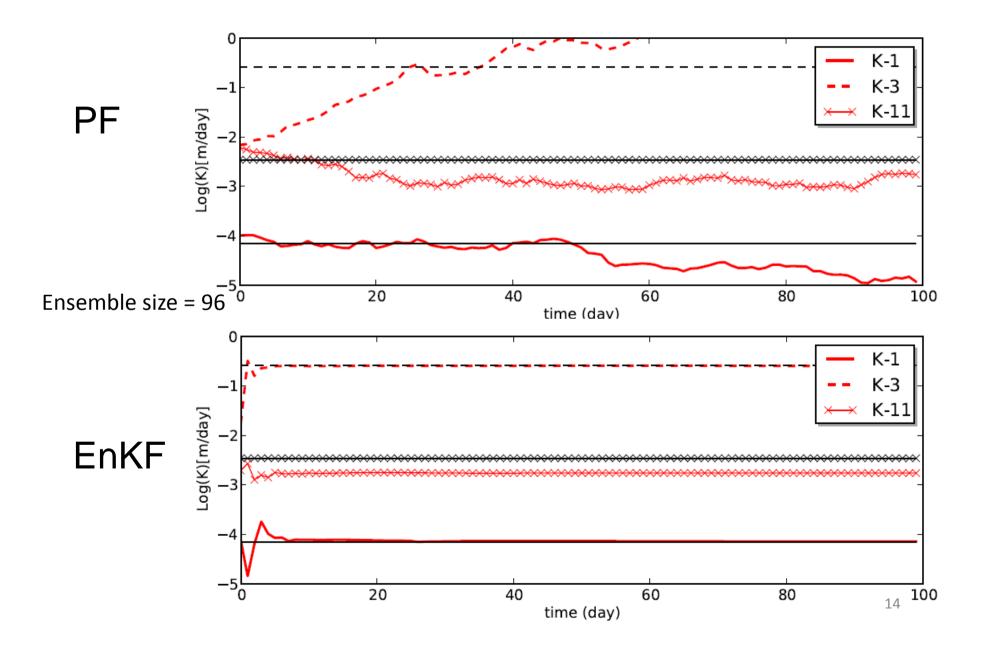
Assimilation results of water inflows in tanks



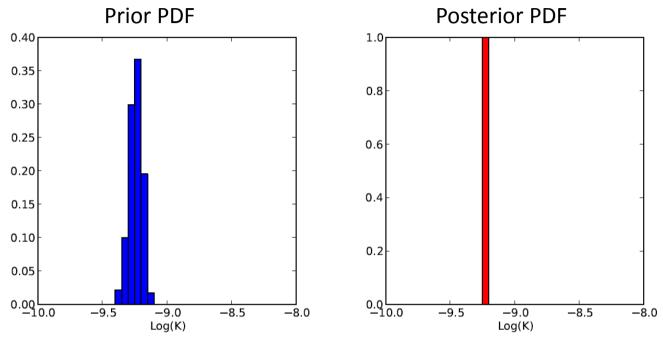
#### Assimilation results of pressure head



#### Estimation results of log(K)



### Degeneration of particle filter

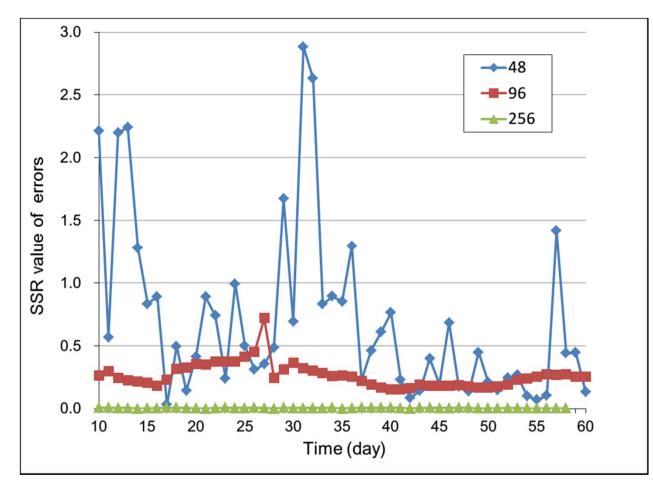


Probability distribution of log(K) at 60<sup>th</sup> day (ensemble size=512)

> PF collapses completely in every time step.

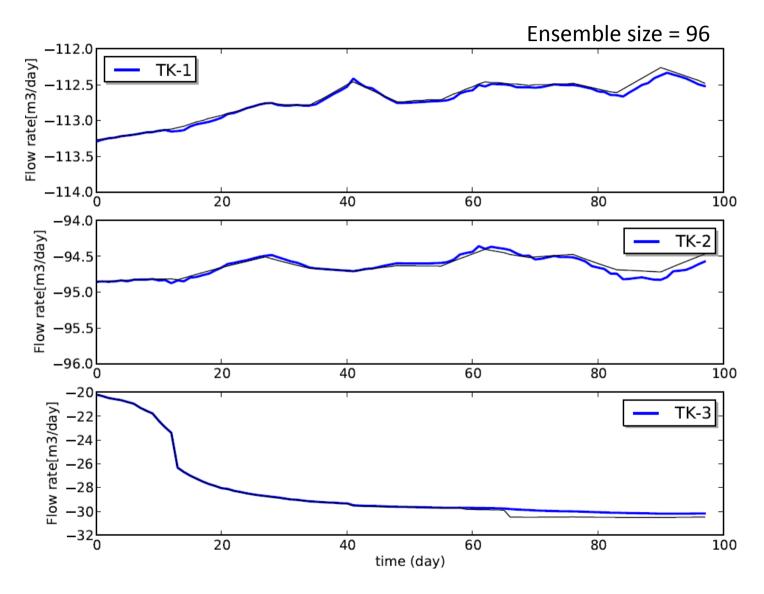
Using more than thousands ensemble member is impractical!

### Number of ensemble members in EnKF



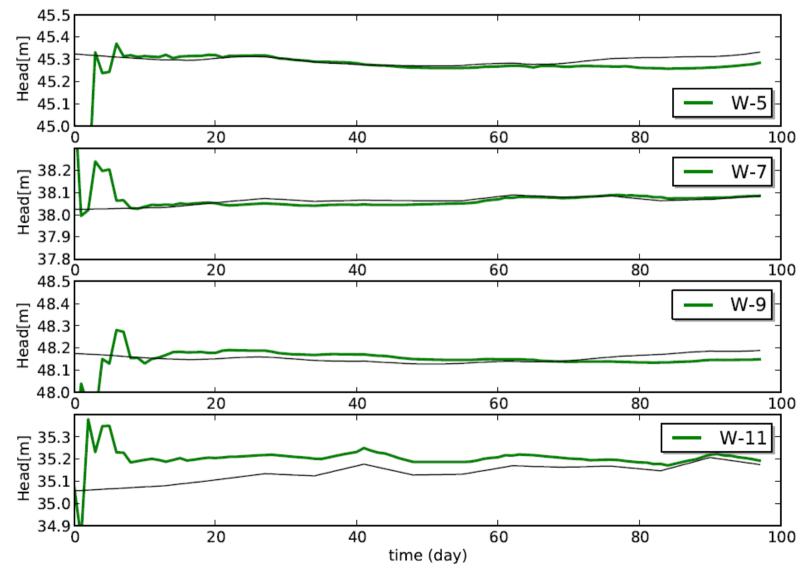
Comparison of the errors of pressure head observations

# Assimilation results of water inflows with EnKF (unsaturated model)



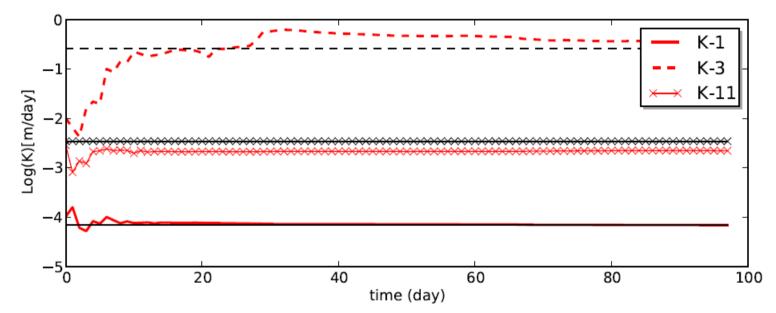
## Assimilation results of pressure head with EnKF (unsaturated model)

Ensemble size = 96

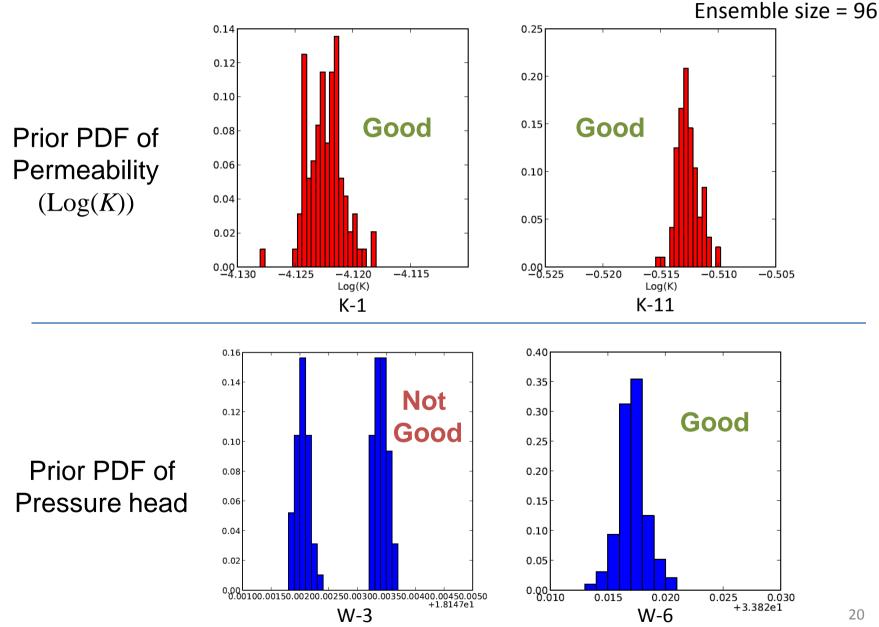


#### Estimation results of log(K) (Unsaturated model)

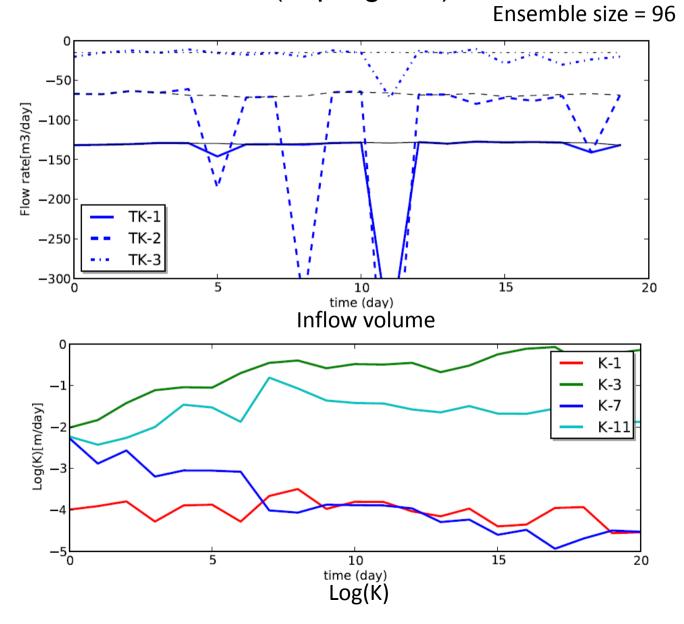
Ensemble size = 96



#### Non-linearity of unsaturated model

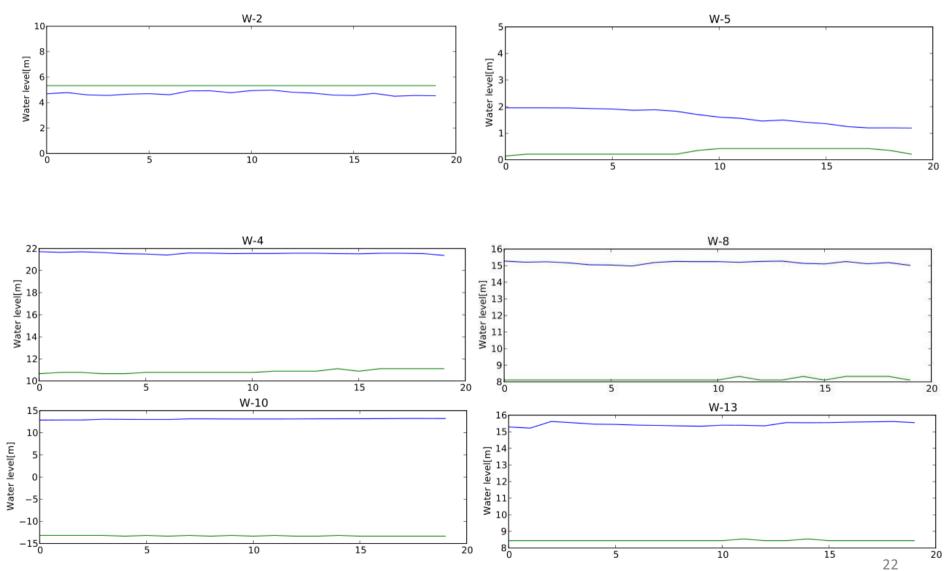


## Data assimilation using real observations with EnKF (in progress)



# Data assimilation using real observations (in progress)

Ensemble size = 96



## Summary of the results

- EnKF produces good performance under the twin experiments with perfect model and observations.
- Application of particle filter is difficult at acceptable computation cost.
- The non-linearity of the unsaturated model collapses Gaussian distributions of state variables and reduces the accuracy.
- The assimilation result using real observations has biased errors. This implies that the current model has a limitation.

## Future tasks

- Model evaluation and refinement
  - More accurate geological model
  - Considering the uncertainty of the groundwater recharge
- Find a solution to deal with non-gaussian distributions in EnKF
  - Gaussian mixture density
- Build the appropriate scheme for successful data assimilation in an actual operation.
  - Assimilation cycle
  - Ensemble size