
ACCURACY AND WELL-POSEDNESS OF
GAUSSIAN FILTERS FOR DATA ASSIMILATION

Andrew Stuart

Mathematics Institute
University of Warwick

Supported by EPSRC, ERC, ESA and ONR

May 29th 2013, Data Assimilation Seminar, Reading University

Mathematics Institute (Warwick) http://homepages.warwick.ac.uk/∼masdr/
ANALYSIS OF ENSEMBLE FILTERS 1 /

34



REFERENCES

Outline

1 REFERENCES

2 THE FILTERING PROBLEM

3 3DVAR

4 3DVAR: DISCRETE TIME

5 3DVAR CONTINUOUS TIME

6 ENSEMBLE KALMAN FILTER (EnKF)

7 EnKF: DISCRETE TIME

8 EnKF: CONTINUOUS TIME

9 CONCLUSIONS

10 REFERENCES

Mathematics Institute (Warwick) http://homepages.warwick.ac.uk/∼masdr/
ANALYSIS OF ENSEMBLE FILTERS 2 /

34



REFERENCES

References

1 K.J.H.Law and A.M.Stuart. "Evaluating Data Assimilation
Algorithms". Monthly Weather Review, 140(2012), 3757–3782.
arxiv.org/abs/1107.4118

2 C. Brett, A. Lam, K.J.H. Law, D. McCormick, M. Scott and A.M.
Stuart. "Accuracy and Stability of Filters for the Dissipative PDEs”.
PhysicaD, 245(2013), 34–45. arxiv.org/abs/1110.2527

3 D. Blömker, K. Law, A.M. Stuart and K.Zygalakis. "Accuracy and
stability of the continuous-time 3DVAR filter for the Navier-Stokes
equation.” Nonlinearity, To appear. arxiv.org/abs/1210.1594

4 “Well-posedness of ensemble Kalman filters”
D.T.B Kelly and A.M. Stuart, In preparation.

5 K.J.H. Law, A. Shukla and A.M. Stuart, “Analysis of the 3DVAR
Filter for the Partially Observed Lorenz ’63 Model.” Discrete and
Continuous Dynamical Systems A, To Appear.
arxiv.org/abs/1212.4923

Mathematics Institute (Warwick) http://homepages.warwick.ac.uk/∼masdr/
ANALYSIS OF ENSEMBLE FILTERS 3 /

34



THE FILTERING PROBLEM

Outline

1 REFERENCES

2 THE FILTERING PROBLEM

3 3DVAR

4 3DVAR: DISCRETE TIME

5 3DVAR CONTINUOUS TIME

6 ENSEMBLE KALMAN FILTER (EnKF)

7 EnKF: DISCRETE TIME

8 EnKF: CONTINUOUS TIME

9 CONCLUSIONS

10 REFERENCES

Mathematics Institute (Warwick) http://homepages.warwick.ac.uk/∼masdr/
ANALYSIS OF ENSEMBLE FILTERS 4 /

34



THE FILTERING PROBLEM

The Filtering Problem

Partially Observed Dynamics
Let Ψ denote the time h flow of a dynamical system with uncertain
initial condition:

vn+1 = Ψ(vn), v0 ∼ N(z0,C0)

with linear noisy observations

yn+1 = Hvn+1 + ζn+1, ζn ∼ N(0, Γ).

State Estimation

Try to estimate P
(
vn|{yj}nj=1

)
. This probablity measure quantifies

uncertainty.
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THE FILTERING PROBLEM

Examples: Forward Model

Lorenz ’63

v̇ (1) = α
(
v (2) − v (1)),

v̇ (2) = −αv (1) − v (2) − v (1)v (3),

v̇ (3) = v (1)v (2) − bv (3) − b
(
r + α

)
.

Lorenz ’96

v̇ (k) = v (k−1)
(

v (k+1) − v (k−2)
)
− v (k) + f , k = 1, · · · ,K

v (0) = v (K ), v (−1) = v (K−1), v (K+1) = v (1).

2D Navier-Stokes as ODE on H :

H := L̇2
div(T2). V := Ḣ1

div(T2).
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THE FILTERING PROBLEM

Examples: Observation Operator

Lorenz ’63

Observe only v (1) so that H = (1,0,0)T .

Lorenz ’96
Observe 2/3 of the variables (regular pattern, not random).

2D Navier-Stokes as ODE on H :

Observe Fourier modes with wave number k : |k | ≤ kmax.
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THE FILTERING PROBLEM

General Setting

For
(
V, ‖ · ‖

)
continuously embedded in

(
H, 〈·, ·〉, | · |

)
:

The Model
dv
dt

+ Av + B(v , v) = f

Assumptions 1
There is λ > 0 such that, for all w ∈ V,

〈Aw ,w〉 ≥ λ‖w‖2, 〈B(w ,w),w〉 = 0.

Assumptions 2
The symmetric bilinear form B satisfies, for all wi ∈ V,

〈B(w1,w2),w2〉 ≤ K‖w1‖‖w2‖|w2|, 〈B(w1,w2),w3〉 ≤ K‖w1‖‖w2‖‖w3‖.
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THE FILTERING PROBLEM

Approximate Gaussian Filters

Prediction Step

ẑn+1 = Ψ(zn).

Analysis Step

zn+1 = argminz

(
|C−

1
2

n+1(z − ẑn+1)|2 + |Γ−1/2(yn+1 − Hz)|2
)

Design Parameters
The operators Cn+1 characterize model uncertainty and are design
parameters.
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3DVAR

3DVAR: Approximate Gaussian Filter

Fixed Model Covariance

Cn+1 = C

Kalman Mean Update

zn+1 = (I − KH)Ψ(zn) + Kyn+1.

Kalman Covariance Update

K = CH∗(HCH∗ + Γ)−1.
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3DVAR: DISCRETE TIME
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3DVAR: DISCRETE TIME

Accuracy Theorem

Recall vn = v(nh). Truth.
Define ε2 := E‖ζn‖2. Observational noise variance.
Define η2. Ratio of observational to model variance.

Assumptions 3
Let h be sufficiently small and, for NSE, kmax sufficiently large.

Theorem 1 ([2,5])
Under Assumptions 1,2, and 3 there exists r ∈ (0,1) and ηc , k ∈ (0,∞)
such that, for all η < ηc ,

E‖zj − vj‖2 ≤ r j‖z0 − v0‖2 +
k
h
ε2
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3DVAR: DISCRETE TIME

Proof of Accuracy/Stability Theorem

Rewrite Truth Update

vn+1 = Ψ(vn)

vn+1 = (I − KH)Ψ(vn) + KHΨ(vn)

Use Data in Filter

zn+1 = (I − KH)Ψ(zn) + Kyn+1

zn+1 = (I − KH)Ψ(zn) + KHΨ(vn) + K ξn.

Subtract

zn+1 − vn+1 = (I − KH)
(

Ψ(zn)−Ψ(vn)
)

+ K ξn.
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3DVAR: DISCRETE TIME

Inaccurate
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3DVAR: DISCRETE TIME

Accurate: Variance Inflation, Decrease η
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3DVAR CONTINUOUS TIME

Parameter Scalings

Rescale

C = ωσ2
0A−2ζ ;

Γ = 1
hσ

2
0A−2β;

yj+1 :=
(
ξj+1−ξj

h

)
and ξj is now viewed as the data;

ζj ∼ σ0√
h
N(0,A−2β).
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3DVAR CONTINUOUS TIME

SPDE Limit

Limiting S(P)DE

dz
dt

+ νAz + B(z, z) + ωH∗A−2α
(

Hz − dξ
dt

)
= f .

Data

dξ
dt

= Hv + σ0A−βH
dW
dt

.

Combining

dz
dt

+ νAz + B(z, z) + ωA−2αH
(

z − v
)

= f + σ0ωA−2α−βH
dW
dt

.
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3DVAR CONTINUOUS TIME

Accuracy Theorem

Recall v(t). Truth.
Define ε2 := ω2σ2

0.

Assumptions 4
(For NSE only) kmax sufficiently large.

Theorem 2 ([3,5])
Under Assumptions 1,2 and 4 there exists ωc > 0 and γ0,K ∈ (0,∞)
such that, for all ω > ωc ,

E|z(t)− v(t)|2 ≤ exp(−γ0t)|z(0)− v(0)|2 + cε2
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3DVAR CONTINUOUS TIME

SPDE Inaccurate
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3DVAR CONTINUOUS TIME

SPDE Accurate: Decrease σ0
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ENSEMBLE KALMAN FILTER (EnKF)

The Ensemble Kalman Filter

Prediction Step

ẑ j
n+1 = Ψ(z j

n), j ∈ {1, · · · , J}.

Estimate model uncertainty:

zn+1 = 1
J
∑J

j=1 ẑ j
n+1

Cn+1 = 1
J
∑J

j=1 ẑ j
n+1(ẑ j

n+1)T − zn+1zT
n+1

Analysis Step

Sn+1 = HCn+1HT + Γ, Kn+1 = Cn+1HT S−1
n+1

z j
n+1 = (I − Kn+1H)ẑ j

n+1 + Kn+1y j
n+1, j ∈ {1, · · · , J}.

Perturbed Observations Data

y j
n = yn + ζ j

n, ζ j
n ∼ N(0, Γ)
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ENSEMBLE KALMAN FILTER (EnKF)

Why Use EnKF?

Relative Errors in Filters for Chaotic NSE [1]

method error
3DVAR(h = 0.02) 0.063289
EnKF(h = 0.02) 0.0523566
3DVAR(h = 0.1) 0.203165
EnKF(h = 0.1) 0.109402

3DVAR(h = 0.2) 0.300853
EnKF(h = 0.2) 0.113806
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EnKF: DISCRETE TIME
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EnKF: DISCRETE TIME

Discrete Time Filter: Well-Posedness

Recall vn truth.

Assumptions 5

Γ = γ2I,H = I.

Theorem 3 ([4])
Under Assumptions 1,2 and 5 there are constants β,K independent of
n such that

E|z j
n − vn|2 ≤ exp (2βnh)E|z j

0 − z0|2 + 2Kγ2
(exp (2βnh)− 1

exp (2βh)− 1

)
.
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EnKF: CONTINUOUS TIME
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EnKF: CONTINUOUS TIME

Continuous Time Limit

Scalings

Γ =
1
h

Γ0, zn = z(nh), z j
n = z j(nh), h� 1.

Limiting S(P)DEs

dz j

dt
+ Az j + B(z j , z j) = f + CH∗Γ−1

0

(dξj

dt
− Hz j

)
,

dξj

dt
= Hv + Γ

1
2
0 H

dW j

dt
.

Coupling
Coupled through the empirical covariance C
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EnKF: CONTINUOUS TIME

Continuous Time Limit: Well-Posedness

Recall v(t) truth.

Assumptions 6

Γ0 = γ2I,H = I.

Theorem 4 ([4])
Under Assumptions 1,2 and 6 there are constants β,K independent of
t such that

E
J∑

j=1

|z j(t)−v(t)|2 ≤ exp (2βt)E
J∑

j=1

|z j(0)−z(0)|2+2K
(exp (2βt)− 1

exp (2β)− 1

)
.
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CONCLUSIONS

Summary

Approximate Gaussian filters solve a minimization problem,
sequentially, to compute a model/data compromise.
Quadratic dissipative systems are studied to get insight into
optimal paramater choices.
The 3DVAR method is provably accurate, in both discrete and
continuous time settings, if enough unstable modes are observed
and data is trusted enough (variance inflation).
The EnKF is provably well-posed, in both discrete and continuous
time settings, in fully observed case.
Filter instability reported in the literature probably involves
interaction with numerical instability.
Significant hurdles in analysis to push rigorous study of EnKF
further.
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