

A novel transport assimilation method for the Atlantic meridional overturning circulation at 26°N

Leon Hermanson, Nick Dunstone, Keith Haines, Jon Robson, Doug Smith and Rowan Sutton

j.i.robson@reading.ac.uk

NATURAL ENVIRONMENT RESEARCH COUNCIL

Atlantic Multidecadal Variability (AMV) and its climate impacts

Can we predict the low frequency variability?

- Models suggest that AMV is largely associated with slow changes in ocean circulation (e.g. AMOC) and heat transport
- Could be predictable for up-to a decade ahead

(from Smith et al, 2010)

JJASON surface temperature Yrs 1-5 (DePreSys – NoAssim)

- Only "skill" in a few regions
 - Mainly in the North Atlantic – Why?
 - Is the skill just persistence?

(from Smith et al, 2010)

1990s North Atlantic warming

National Centre for

Atmospheric Science

Measurements of the AMOC

- Initialisation of the AMOC is thought to be essential for skilful mulityear-to-decadal predictions of the North Atlantic
- But, scarcity of ocean data means estimates of the historical AMOC variability are very uncertain.

- However, since 2004 the first continuous measurements of the AMOC have been taken by the RAPID array
- Key question is whether these new observations can improve ocean state estimation and predictions.

- Based on HadCM3
 - 1.25° Ocean 20 levels
 - 3.75 x 2.5° Atmosphere 19 Levels
- Uses anomaly assimilation
 - 3D ocean T, and S
 - atmospheric U,V,T and MSLP
 - Hindcasts initialised every November between 1960-2005
- "Assimilation" is a two stage process
 - First, Analysis object statistical analyses of ocean Temperature and Salinity

(from ERA)

– Second, Assimilation - model is relaxed (strongly) towards analysis

Analysis

- Statistical Optimal Interpolation
 - Uses global model-derived co-variances to reconstruct T and S anomalies (Smith and Murphy, 2007)
 - Co-variances are derived from 50 years of HadCM3 form a transient run
 - Also uses lagged co-variances to analyse 6 months of data

Initialisation of DePreSys

- Seasonal forecasts typically assimilate full fields to initialise the model close to the observed state.
- DePreSys is Initialised close to the model attractor by assimilating anomalies on to the model climate

-1.5

Measuring the AMOC

Measuring the AMOC

Measuring the AMOC

Array of Moorings measuring Temperature and Salinity twice daily uses thermal wind relationship to deduce geostrophic transport

RAPID timeseries

Assimilating RAPID – What's been done?

Walke INSTITUTE

But.... Problems with assimilating RAPID into HadCM3

 A significant problem for assimilating into coupled climate models is their very low spatial resolution (HadCM3 1.25 Degree ocean)

But.... Problems with assimilating RAPID into HadCM3

 A significant problem for assimilating into coupled climate models is their very low spatial resolution (HadCM3 1.25 Degree ocean)

- Not only is there no Florida Straits, *there isn't even a Florida*!
 - The Physics of the problem is not the same between model and real-world

So how did we decide to tackle the problem?

- Novel aspects of the assimilation used in DePreSys is actually an opportunity to try something different
- We could assimilate the whole of the RAPID transport and not just temperature and Salinity profiles
- Focus on the covariance of transport with the models 3D Temperature and Salinity fields
- We will focus on MOC-Ekman

T&S regressed onto MOC-Ekman at 26 N

Calculated from the average regression coefficients of ten 48-year sections of control integration removing the seasonal cycle from monthly means

University of **Reading**

Density@1100m related to MOC-Ekman

Assimilating real observations...

Assimilating real observations...

When we assimilated the EN3+transport the skill decreased to 0.38....

Why?

Psuedo-observation experiments

- An idealised framework to test different analysis and assimilation approaches
- Twin experiment: HadCM3 -> HadCM3
- 10 irregularly spaced start dates within 1000 years of HadCM3 control
- "Observations" of transport, ocean temperature and salinity from one year are analysed & assimilated – We use 2008 EN3 observation mask for profiles of Temperature and Salinity

Validation of density gradient at 26N

Where is the Skill coming from?

Why is there skill in transport only assimilation?

Excitation of the MOC by the Atmosphere?Non-local density anomalies?

Where is the Skill coming from?

High-frequency waves?

- Transport based co-variances can be used to assimilate the RAPID observations with significant apparent skill
- However, the method doesn't currently work well with other observations....
- Care is also needed to ensure that the method actually works on the mechanism that you intend it too!
- However, there is a lot of room for improvement...

How could this be improved?

Covariance's used only focused on the density anomalies that created an average MOC anomaly. But several mechanisms overlap – can we separate them?

- Could include longer lagged covariances
- It's also important to improve the models

NSTITUTE

National Centre for

Atmospheric Science

0

- Decadal prediction is a rapidly growing field. Many systems use simple relaxations to produce initial conditions.
- The new Met Office decadal prediction system is moving to the new high-resolution HadGEM3 climate model (N216, ORCA025)
- The current system will still use the same analysis and relaxation method to initialise predictions.
- There is a lot of potential for improving the assimilation of data into coupled prediction models!

• Thanks!

