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Motivation 

x10-1 hPa 

• Comprehensive numerical 

climate models are the best 

tool available to understand 

climate change and to tackle 

the problems of mitigation and 

adaptation under future climate 

scenarios 

• However, these models show 

biases with respect to current 

climate conditions 

• In the figure, biases in storm 

track position in CMIP3 and 

CMIP5 models w.r.t. ERA-

Interim 

Zappa et al. (J. Clim. 2013) 



Motivation 

x10-1 hPa 

• The origin and mechanisms 

that give rise to these biases 

are not yet well understood 

• Can we find a key to 

understand these mechanisms 

in the interaction weather–

climate? 

• A theory to link these two 

timescales has not been 

developed yet 

Zappa et al. (J. Clim. 2013) 



Suitability of climate models 

The suitability of numerical climate models to study the climate is 

based in two assumptions: 

1. A climate attractor exists 

2. The solutions provided by a numerical climate 

model lie on the climate attractor 

A third assumption is required if climate models are to be used in 

climate change studies: 

3. The model climate attractor responds in the same 

way as the actual climate attractor under changing 

forcing conditions 
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Methodology 

Lorenz system (Lorenz 1963) 

𝑥 = 𝜎 𝑦 − 𝑥  

𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧 

𝑧 = 𝑥𝑦 − 𝑏𝑧 

(x, y, z) are dynamical variables (phase space variables) 

σ, b and r are constant parameters 

The behaviour of the system depends on the values of these 

parameters 

The types of behaviour in the Lorenz system includes chaotic 

behaviour 

This system has been widely used as a prototype of 

atmospheric and climate behaviour 
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Model error in the prototype 

system/imperfect model combination 

• Let us assume that we 

observe the prototype system 

at regular intervals (e.g. 

every 1 time unit) 

• These observations are 

perfect 

• Then let us use the imperfect 

model to make forecasts of 

the prototype system from 

these perfect initial 

conditions 

• Let us assume that we have 

access to only one of the 

three phase space variables 

(e.g. x) 
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Black line – True orbit 

Red line – Model orbit initialised every 1 t.u. 
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x – Forecast state after 1 t.u. 
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model initialised with imperfect initial 

conditions 
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observe the prototype system 

at regular intervals (e.g. 

every 1 time unit) 

• These observations are 
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Black line – True orbit 

Red line – Model orbit initialised every 1 t.u. 

from perfect initial conditions (dots) 

Red line – Forecast error (imperfect model) 

Black line – Forecast error (perfect model 

initialised with imperfect initial conditions) 

time (t.u.) 



Model error in the prototype 

system/imperfect model combination 

• Let us assume that we 

observe the prototype system 

at regular intervals (e.g. 

every 1 time unit) 

• These observations are 

perfect 

• Then let us use the imperfect 

model to make forecasts of 

the prototype system from 

these perfect initial 

conditions 

• Let us now assume that we 

have access to all three 

phase space variables (i.e. x, 

y, z) 

time (t.u.) 

Circles – Distance between the perfect initial 

conditions and the imperfect model attractor 



Model error in the prototype 

system/imperfect model combination 

• Let us generate a climatology 

from the collection of 

analyses and let us call this 

climatology at lead time tL = 0 

• Similarly let us generate 

climatologies from the 

collection of perfect and 

imperfect forecasts for a 

given lead time tL > 0 

Black – Perfect model with imperfect initial 

conditions 

Red – Imperfect model with perfect initial 

conditions 



Model error in the prototype 

system/imperfect model combination 

• Let us generate a climatology 

from the collection of 

analyses and let us call this 

climatology at lead time tL = 0 

• Similarly let us generate 

climatologies from the 

collection of perfect and 

imperfect forecasts for a 

given lead time tL > 0 

Black – Perfect model with imperfect initial 

conditions 

Red – Imperfect model with perfect initial 

conditions 

If the model was perfect, the 

reconstructed climate attractor 

would be invariant to lead time. 

In contrast, an imperfect model will 

tend towards the imperfect model 

attractor. 



Generation of biases in the prototype 

system/imperfect model combination 



Generation of biases in the actual 

climate/numerical models combination 

First and third quartiles of daily zonally averaged 320-K PV in analyses (T+0, black) and 

T+15d (control member, red) for the season from December 2009 to February 2010 

MOGREPS-15 ECMWF EPS NCEP 



Generation of biases in the actual 

climate/numerical models combination 

First and third quartiles of daily zonally averaged 320-K PV in analyses (T+0, black) and 

T+15d (control member, red) for the season from December 2009 to February 2010 

MOGREPS-15 ECMWF EPS NCEP 

• The displacement from the black profile to the red profile indicate a 

similar behaviour to that described for the prototype system/imperfect 

model combination 

• The same qualitative behaviour is found in other seasons and in the 

Southern hemisphere 

• However, only control ensemble members are being considered here! 



Representation of model error 

variability in numerical models 

Ideally, the ensemble 

members of an ensemble 

prediction system should 

represent not only variability 

due to sensitivity to initial 

conditions but also variability 

due to model error (i.e. the 

blue ensemble members 

should resemble the black 

orbits) 



Representation of model error 

variability in numerical models 

Sideri (2013) 
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Sideri (2013) 



Implications of model error for numerical 

weather and climate prediction 

1. An imperfect model will show a drift from analysis to 

its own attractor. 

2. A climatology constructed by taking forecasts at 

different lead times show this drift until the model 

attractor has been reached 

3. If the model was perfect, the reconstructed climate 

attractor would be invariant to lead time 

The appearance of the terms ‘reconstructed climate 

attractor’ and ‘lead time’ provide the link between 

weather and climate 



1 2 1

1 2 1 int[( 1)/ ] 1

( 1) 1

( ) ( )

( )

( )

k
k k k k k

j

j j j j j J

kJ

k j

j J k

dX
X X X X F U Y

dt

dY hc
cbY Y Y cY X

dt b

hc
Y YU

b

  

    

  

     

    

 

1 2 1

det

( ) ( )

( ) ( ) ( )

k
k k k k p

p

dX
X X X X F U X

dt

X U X e tU

       

 

Lorenz ’96 system 

Prototype system 

Imperfect model 

Parametrisation following Arnold et al. (2013) 

X and Y are cyclic 



Model error in the prototype 

system/imperfect model combination 



Distance between climatologies as 

functions of lead time 
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( , ) ( ( ) ( ))

2
f g f x g x dxH  

Distance between climatologies 

given by the Hellinger distance 

(following Arnold et al. (2013)) 



Distance between climatologies as a 

function of sample size 



Schematic of the distance between 

climatologies 
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Schematic of the distance between 

climatologies 

• For the cases shown 

d2  d 

• Improvement of the 

models should lead to 

d  0 and d2  d1. 
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Schematic of the distance between 

climatologies 

Re-analysis 

datasets 

Climate model under 

present-day conditions 

Re-forecast 

datasets 

Unavailable? 

Where are 

we now? 


