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Outline of Talk

Met Office

« Why are we doing it? What is wrong with 4D-Var? Why
do we need an ensemble?

« Addressed by:

Hybrid-4D-Var. Flow-dependent covariances from localised
ensemble perturbations.

4DEnVar. No need to integrate linear & adjoint models. But can it
match hybrid-4D-Var?

An Ensemble of ADEnVar. Or alternatives.

 Localisation of covariances is key to good results.



Background

Met Office

* 4D-Var has been the best DA method for operational NWP for
the last decade (Rabier 2005).

* Since then we have gained a day’s predictive skill — the
forecast “background” is usually very good; properly
identifying its likely errors is increasingly important.

* Most of the gain in skill has been due to increased resolution,
which was enabled by bigger computers. To continue to
improve, we must make effective use of planned massively
parallel computers.

* At high resolution, we can no longer concentrate on a single
“deterministic” best estimate (Lorenc and Payne 2007); an
ensemble sampling plausible estimates is better.
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Outline of 4D-Var

Met Office

Background x’ and a transform U based on the error covariance B of x°

UU' =B
Control variable v which, via transform U, defines likely corrections Jx to x°
ox =Uv
Prediction y of observed values y° using model M and observation operator A
y :H(]\_l(xb +5x)) =H(]\_4(Xb) +M5x)
Measure misfit J of incremented state to background and observations
' R_l(y ‘yo) +Jc
Search for minimum of J, using gradient calculated using adjoint operators

e TP UM Ry

J(V) =3VTv+%(y—y")

hybrid



Key weaknesses of 4D-Var

Met Office

1. Background errors are modelled using a covariance usually
assumed to be stationary, isotropic and homogeneous.

2. The minimisation requires repeated sequential runs of a
(low resolution) linear model and its adjoint.

3. Minimum-variance estimate is only “best” for near-
Gaussians. Cannot handle poorly observed coherent
features such as convection.

The Met Office has already addressed 1 in its
hybrid ensemble-4D-Var (Clayton et al. 2012).

This talk describes our 4DEnVar developments
attempting to extend this to also address 2, and
discusses ensemble approaches to address 3.
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Scalability — exploiting
wetome 1NNASSIVely parallel computers

* 4D-Var requires sequential running of a reduced resolution linear PF
model and its adjoint. It will be difficult to exploit computers with more
(but not faster) processors to make 4D—-Var run as fast at higher
resolution.

* Improved current 4D-Var algorithms postpone the problem a few
years, but it will probably return, hitting 4D-Var before the high-
resolution forecast models.

* 4DCV 4D-Var can be parallelised over each CV segment (Fisher
2011), but is difficult to precondition well.

* Ensemble DA methods run a similar number of model integrations in
parallel. It is attractive to replace the iterated running of the PF model
by precalculated ensemble trajectories: 4DEnVar.

Other advantages of VAR can be retained.
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Localised ensemble perturbations —

gl the alpha control variable method

* Met Office code written in late 90’s for 3D-Var or
4D—-Var (Barker and Lorenc) then shelved pending
an ensemble.

* Proven to work in NCAR 3D-Var (Wang et al. 2008)

* Proven to be equivalent to EnKF localisation
(Lorenc 2003, Wang et al 2007).

* Eventually implemented in Met Office operational
global hybrid ensemble-4D-Var (Clayton et al 2012).
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Simple Idea — Linear combination

Ayl of ensemble members

* Assume analysis increments are a linear combination of
ensemble perturbations K
Ax = z (x-X)a,
i=1

 Independent o, implies that covariance of ox is that of the
ensemble.

 Allow each a to vary slowly in space, so eventually we can
have a different linear combination some distance away.

* Four-dimension extension: apply the above to ensemble

trajectories: Ox = Z (x,-X)a,

=1
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Hybrid 4D-Var formulation

Met Office

« VAR with climatological covariance B.:

B, =UU" &, =Uv=U,UU,v

VAR with localised ensemble covariance P, o C,

loc*"

\/ﬁ Z (Xz"i) Ijlz‘

rather than the full covariance B..

C :UaUaT o, :UaV? &(e =

loc

Note: We are now modelling C

loc

y=H(M(x"+B.0x +B0x,)| = H[M[x') +M(B.x, +B0x,)|

Hybrid 4D-Var:

T T _
J=§VTV - iva vaD ily_yol R 1 Iy_yol - JC

Met Office detail: We localise and combine in transformed variable space
to preserve balance and allow a nonlinear U_.

: , 4D-Var
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Testing of hybrid 4D-Var

Met Office

* Used 23 perturbations from operational MOGREPS
ensemble system (localised ETKF)

 Straightforward to demonstrate that hybrid-3D-Var
performs better than 3D-Var (as in Wang et al. 2008)

* Harder to demonstrate that hybrid-4D-Var performs
better than operational 4D-Var.

* Modifications and tuning eventually gave a large and
widespread benefit.

* Several more improvements being worked on.
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4D ensemble covariances without
using a linear model — 4DEnVar

Met Office

* Combination of ideas from hybrid-Var just discussed
and 4DEnKF (Hunt et al 2004).

* First published by Liu et al (2008) and tested for real
system by Buehner et al (2010).

* Potentially equivalent to 4D-Var without needing
linear and adjoint model software.

* Model forecasts can be done in parallel beforehand
rather than sequentially during the 4D-Var iterations.
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Statistical, incremental 4D-Var

Met Office

Statistical 4D-Var approximates entire PDF by a
4D Gaussian defined by PF model.

4D analysis increment is a trajectory of the PF model.

Lorenc & Payne 2007



Incremental 4D-Ensemble-Var

Trajectories of perturbations from ensemble mean
Full model evolves mean of PDF
Localised trajectories define 4D PDF of possible increments

4D analysis is a (localised) linear combination of nonlinear
trajectories. It is not itself a trajectory.
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Hybrid 4DEnVar —
differences from hybrid-4D-Var

Met Office

4D trajectory is used from background and ensemble, rather than 3D
states at beginning of window.

1 K
4D localisation fields and increment ox, = (x,-X) L&,
K12

OX, increment is constant in time, as in 3D-Var FGAT

No model integration inside minimisation, so costs like hybrid-3D-Var

No JC balance constraint, so additional initialisation is necessary.
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Results of First Trials

Met Office

* Target is to match operational hybrid-4D-Var

* 4DEnVar was set up with:

* Same analysis resolution as 4D-Var

* Same ensemble as hybrid-4D-Var

« Same climatological B (but used as in 3D-Var)
* Same hybrid 3s

* 100 iterations

* |AU-like initialisation

» Baseline is hybrid-3D-Var (=3DEnVar)
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Mean RMS error reduction,
compared to hybrid-3D-Var

Met Office
[14DEnVar L1 hybrid-4D-Var

4 -

22 members 44 members



4DEnVar beats hybrid-3D-Var

but not hybrid-4D-Var

Met Office
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4DEnVar is not expected to beat

Apetil En-4D-Var, all else equal.

« En-4D-Var uses 4D covariance M(L°B,))M'. Its time-
correlations are correct as long as M is accurate.

* 4DEnVar uses perturbations of 4D nonlinear ensemble
trajectories from their mean. Ignoring the nonlinearity of
the model this equals L.(MB, M'). Its time-correlations

are incorrect because LL and M do not commute.

* In spatial dimensions the methods are equivalent.

* Demonstrated in a toy model by Fairbairn et al. (2013).



Perfect
model
expts.

Imperfect
model
expts
with
additive
inflation
sampled
from Q

ADEnVar . 4D-Var-Ben , 4D-Var
Toy model results
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The Schur or Hadamard Product

A =B o C sych that Au = BI‘JCI‘J-

Il\!let Office

If B and C are valid covariances, then so is A.

: fae, n=100* compact support
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-0.5

0 500 1000 1500 2000 2500 3000
distance (km)
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Methods for applying
metoree 1OCAlISation

1. Direct modification of covariances.
* Only possible if covariances are explicitly calculated.
« Often (incorrectly) applied as L-H"BH in EnKF.
1. acontrol variable.
* Basis of EnVar method (Lorenc 2003)
1. Generation of extra ensemble members.
* Used in spectral localisation (Buehner and Charron 2007)
* Used in flow dependent localisation (Bishop and Hodyss 2011)
1. Limits to observation selection for point being analysed.
* Applied in Ol (from necessity to save time)
* Applied in LETKF



Localisation options in the
vetoie V€L Office EnVar system

1. Parameter (“balanced” psi & residuals chi, Ap, mu)

Spectral (Waveband) (Buehner and Charron 2007, Buehner 2012)

Vertical

B~ W N

Horizontal

* Done in the above order — we can use this e.g. to apply
“balance aware” spatial localisation and to have different
horizontal scales for each waveband.



Spectral localisation smooths in space:
Metorice O OF Pressure at level 21

C: Climatological E: Ensemble
p: sigma at level 21 3076m, max=46.5911 p: sigma at level 21 3076m, max=254.821

locVHhwb610: Ens + V&varyingH loc + 6 increasing wb, overlapf ElocVH: Ens + vertical & horizontal localisation
p: sigma at level 21 3076m, max=141.148 p: sigma at level 21 3076m, max=197.956

IE—




Climatological Ensemble
C N-S horizontal correlations of p at 984.5mb.

E N-S horizontal correlations of p at 984.5mb.
- . . 3
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Met Office

Horizontal
correlation along |
N-S line
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Ens + V&varyingH loc + 6 increasing wb, overlappin Ens + vertical & horizontal localisation
ElocVHhwb6I0 N-S horizontal correlations of p at 984.5 ElocVH N-S horizontal correlations of p at 984.5mb.

Localisation -
scales for each
waveband seem ¢
beneficial
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Met Office

Vertical cross-
correlation between
g and divergence at

an active point.

Localisation (except
parameter) retains
plausible correlation
between g and
convergence below,
divergence above.

Ensemble
E1000. Vertical cross-correlations at (73.0,4.7)

Climatological
C1000. Vertical cross-correlations at (73.0,4.7)
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What is “Best”?

Met Office

* Minimum-variance Kalman filter based methods such as
4D-Var have enabled big gains in skill we want to keep.

* Regional NWP already represents coherent structures
whose position is uncertain.
The ensemble mean is NOT a good forecast.
Global models will soon reach such resolutions
(5km experiments already).

* Lorenc & Payne (2007) proposed using regularised
minimum variance methods for well-known scales, relying
on the model to develop and maintain fine-scale structure.
|.e. the model is making a plausible sample on its attractor
from the full, non-Gaussian pdf.

We should have an ensemble of such samples.



|AU-like interface with

vetofce TOrecast model
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4D-Var control variables gives
initial 6x, implicitly defining éx.

ox is initialised by Jc term.

Natural to add ox at beginning
of forecast; an outer-loop is
then easy to organise.

ADEnVar ox is defined for all
window.

There is no internal initialisation.

Nudge in o6x during forecast, as

part of an IAU-like initialisation.
(Bloom et al. 1996)



Interface to forecast model has a

Metorrce  VETY large impact on 4DEnVar.

20[
MEAN PERCENTAGE CHANGE IN RMSE = -2.539

4DENnVar with IAU-like interface

MEAN PERCENTAGE CHANGE IN RMSE

0= - - — . =
y :-lllllllll 83
4DEnVar with 4D-Var-like interface § q B
333238888 TEEEETIYE
_m'EEEEEIIIEE%E%EEEEEI:IE'
NMHEM TRGP SHEM

(22 member experiments.)
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How to generate the ensemble?

vetoree AltErNatives:

1.

Separate EnKF. Used operationally in Canada & USA.
Our MOGREPS uses a local ETKF (Bowler 2009).

It was designed for ensemble forecasting rather than
DA.

Ensemble of individual 4DEnVar.
Worried about IO and memory contention of parallel
reads of the ensemble trajectory.

Ensemble of 4DEnVar in single executable.
M We are working to reduce run-time cost.



The differences between ETKF and
En4DEnVar in a preliminary experiment

Met Office
MOGREPS ETKF En 4DEnVar
Analysis perturbation is added Analysis Increment is added
to the deterministic analysis to each ensemble member’s
background
Localisation via observation Localisation in model-space
selection in regions (improved balance)
- Broad horizontal localisation - Horizontal localisation with
(2000km radius) 1200km radius
- No vertical localisation - Vertical localisation




Design Choices for En4DEnVar

Met Office

Perturbed obs or DEnKF

Inflation:

* Relaxation to prior is already done in DEnKF

* Adaptive multiplicative, in regions (copied from MOGREPS)

* Additive. Is this necessary in a hybrid scheme?

 Stochastic physics and random parameters (copied from MOGREPS)
Optimisation for massively parallel computer:

* Add another dimension to domain-decomposition.

* Combine OpenMP & message-passing.

Optimisation of algorithm:
* Independent, or mean & perturbations
* Preconditioning etc. (Desrozier & Berre 2012)
* Avoid En4DEnVar by using EVIL



DEnKF
wetoie  €NSEMDIlE of perturbations

Bowler et al. (2012), inspired by Sakov (2008), showed that a DEnKF
can first solve the standard equation for the mean, then a modified
equation for the perturbations from the mean, with 5 0.5

¢ =x/ + P/ H (HP'H+R)"1(y° - HEF))
x'* = x'I — sPTHT (BHP/H + R) " 1HxX'/.

Similar to “relaxation to prior” inflation. Variational equivalent:
1 — 1 — — — 1 — oNd Ty — — O
J@) =@ -H®H @ -+ S5 -y)'RTIT )
y = H(x! 4 7)

. 1 T, 1. 1 N .
J(631,) = S (03, — 00)T (BPI) "L (0x), = 07) + (v — ) TR (3 = ¥)

yie = H(x] + 6x}.)



Optimisation for MPP

Met Office

v'Parallel read & packing of processed ensemble trajectory OK.

v'Observation load imbalance (~50%) is not currently a major
problem.

* Schur product routines are near top: need to use more
processors.

* Horizontal domain decomposition is no longer sufficient with
more processors: need to add time & ensemble-member.

* Possibly use OpenMP within nodes, with message-passing
domain decomposition between nodes.

Cost of a single 4DEnVar not a problem,
an ensemble of them might be.



-~ Horizontal domain decomposition:
144 pes for a 432x325 grid.

Met Office

326 36 36 36 36 36 36 36 36 36 36 36
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Optimisation - Algorithm
Met Office

* Explore perturbation form of DENKF:
fewer iterations should be needed.

* Conjugate Gradient Algorithm with Hessian
Eigenvector Preconditioning: existing software (Payne)
& additional ideas (Desroziers & Berre 2012).



Preliminary timings
Met Office

With 22 members, N216 resolution, 384 PEs on IBM P6

* lterations in 4DEnVar were 11 times faster than in 4D-Var

* 30% of 4DEnVar in input & pre-processing of ensemble

Complications in comparison

* Cost of ensemble forecasts not included
* 4DEnVar more scalable (no model solver)

* 4D-Var has a legacy of work to speed it up
(multi-resolution, preconditioning)
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Development Plans

Met Office

* EnVar (.e. both hybrid-4D-Var & 4DEnVar)
* Bigger ensemble. Tune hybrid Bs.
* Spectral localisation

* Remove integrated divergence due to vertical localisation.

* 4DEnVar
* Tuning & optimisation
* EDA (i.e. an ensemble of 4DEnVar assimilations)
* Inflation, perturbed obs or DEnKF, etc
* Preconditioning or other efficient algorithm

* Software optimisation (including ENDGAME model)
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GungHo!

Met Office
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Met Office 4DEnVar system -
vetore =X ECEAtIONSs

* 4DEnVar is likely to be the best strategy on the timescale of

GungHo: it is suitable for massively parallel computers and avoids
writing the adjoint of the new model (decision 2015).

* We do not expect It to beat the current operational

hybrid-4D-Var at same resolution, we are working to make it of
comparable quality and cheaper.

* May be implemented to enable higher resolution forecasts, or frequent
rapid runs to provide BCs for UK model.

* Interesting possibilities for convective scale and Nowcasting
_ need much research!

* Anensemble of 4DEnVar might beat operational local-ETKF.
several Options for scientific & software design.
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Nomenclature for Ensemble-
Variational Data Assimilation

Recommendations by WMO’s DAOS WG:
non-ambiguous terminology based on the most common established usage.

1. En should be used to abbreviate Ensemble, as in the EnKF.
2. No need for hyphens (except as established in 4D-Var)

3. 4D-Var or 4DVAR should only be used, even with a prefix, for methods
using an adjoint model.

4. EnVar means a variational method using ensemble covariances. More
specific prefixes (e.g. hybrid, 4D) may be added.

5. hybrid can be applied to methods using a combination of ensemble and
climatological covariances.

6. The EnKF generate ensembles. EnVar does not, unless it is part of an
ensemble of data assimilations (EDA).

7. En4DVAR could mean 4DVAR using ensemble covariances, but Liu et al.
(2009) used it for something else. Less ambiguous is 4DVAR-Ben.
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