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Motivation

I I’ve always taken a Bayesian approach to DA.

I This deals in probabilities such as p(xt
k |yo

1:k−1).

I In variational DA we might make a Gaussian background
assumption:

xt
k |yo

1:k−1 ∼ N(xb
k ,Bk)

I The truth is a random variable.

I The background is a parameter of its distribution.

I The usual cost function has a probabilistic interpretation.
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Motivation (cont)

I But there’s another approach.

I For example, from ECMWF Technical Memo 383 (Hólm et al,
2002):

Consider two forecasts of the truth x, xb
1 and xb

2 ,
where

xb
i = x + bb(x) + εb

i

with bb the bias and εb the stochastic error.

I The background is the random variable.

I The truth is an unknown constant.

I Can we still interpret the cost function in probabilistic terms?
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Bayes and Price (1763)

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to
Philosophical Transactions (1683-1775).

www.jstor.org
®

?

Thomas Bayes (1702–1761)

Richard Price (1723–1791)
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Bayesian, Sense 1

I Using a subjective interpretation of probability

I If I paid £10 for an insurance policy that pays £100,000 if I
die this year, then the probability that I shall die this year is
10/100, 000 = 10−4.

I Some say this is a subjective definition of probability based on
betting.

I I say that the word ‘ought’ suggests Bayes considered there to
be a single objective probability, based on (say) actuarial data.
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Bayesian, Sense 2

I Using Bayes’s theorem

P(A|B) =
P(A)P(B|A)

P(B)

P(AB) = P(A)P(B|A)

P(A|B) =
P(AB)

P(B)

I Bayes never explicitly puts the two pieces together.
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What I Mean by Bayesian

I By a Bayesian approach to DA I mean Bayesian in Sense 2
(using Bayes’s theorem).

I Independent of subjective Bayesian interpretation of
probability.

I In modern axiomatic approach to probability, Bayes’s theorem
is trivial consequence of definition of conditional probability.

I Theorem applies to all interpretations of probability.

I There is a frequentist interpretation of probabilities such as
p(xt

k |yo
1:k−1).

I But not insisting on this: everything that follows follows from
the axioms and applies to any interpretation.
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Observations

I In the DA literature observations are customarily expressed as

yo
k = Hk(xt

k) + εo
k

I In general, error distribution will depend on truth: p(εo
k |xt

k).

I For much of the theory we only need p(yo
k |xt

k).

I Independence of observation errors at different times is
expressed through the conditional independence assumption:

p(yo
1:k |xt

1:k) = p(yo
1|xt

1) . . . p(yo
k |xt

k)
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Observations (cont)

I When the observation is known, p(yo
k |xt

k) becomes a
likelihood function on state space.

I It is this function (not just yo
k) that we are assimilating.

I Sometimes we make the Gaussian observation assumption:

yo
k |xt

k ∼ N(Hk(xt
k),Rk)
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Bayesian Approach to 3D-Var

I By the conditional independence assumption, Bayes’s theorem
can be written

p(xt
k |yo

1:k) =
p(xt

k |yo
1:k−1)p(yo

k |xt
k)

p(yo
k |yo

1:k−1)

I 3D-Var finds the analysis by maximising
p(xt

k |yo
1:k) ∝ p(xt

k |yo
1:k−1)p(yo

k |xt
k).

I It is a maximum a posteriori (MAP) method.

I If we make the Gaussian observation assumption and the
Gaussian background assumption (Bayesian version)

xt
k |yo

1:k−1 ∼ N(xb
k ,Bk)

3D-Var reduces to minimising the cost function

J(xk) = (xk−xb
k)TB−1

k (xk−xb
k)+(yo

k−Hk(xk))TR−1
k (yo

k−Hk(xk))
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Flow Dependence in the Bayesian Approach

I In the Gaussian background assumption

xt
k |yo

1:k−1 ∼ N(xb
k ,Bk)

xb
k is a function of yo

1:k−1.

I Bk may be a function of yo
1:k−1 too.

I A special case is Bk(xb
k). This is one way of bringing

flow-dependency into variational DA.

I In either case, Bk is fixed during the minimisation of J(xk)
because yo

1:k−1 are fixed.

I In the Gaussian observation assumption

yo
k |xt

k ∼ N(Hk(xt
k),Rk)

Rk may be a function of xt
k .

I In this case, Rk(xk) varies during the minimisation of J(xk).
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Towards the Alternative Approach

I xb
k from the Bayesian approach is a function of yo

1:k−1.

I If we give up conditioning on yo
1:k−1, then xb

k becomes a
random variable (because yo

1:k−1 are) and we can consider

p(xb
k |xt

k).

I We can generalise this to an arbitrary estimate xb
k(yo

1:k−1).

I The background is now a random variable and the truth is a
parameter of its distribution.

I In this approach the background is rather like an observation.

I At the start of the assimilation cycle, xb
k is known and

p(xb
k |xt

k) is a likelihood function on state space.

I I therefore call this the likelihood approach.
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Likelihood Approach to 3D-Var

I By the conditional independence assumption

p(xb
k , yo

k |xt
k) = p(xb

k |xt
k)p(yo

k |xt
k)

I 3D-Var finds the analysis by maximising p(xb
k , yo

k |xt
k).

I It is a maximum likelihood (ML) method.

I If we make the Gaussian observation assumption and the
Gaussian background assumption (likelihood version)

xb
k |xt

k ∼ N(xt
k ,Bk)

3D-Var reduces to minimising the cost function

J(xk) = (xb
k−xk)TB−1

k (xb
k−xk)+(yo

k−Hk(xk))TR−1
k (yo

k−Hk(xk))
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Flow Dependence in the Likelihood Approach

I In the Gaussian background assumption

xb
k |xt

k ∼ N(xt
k ,Bk)

Bk may be a function of xt
k .

I In this case, Bk(xk) varies during the minimisation of J(xk).

I This differs from the Bayesian approach, where Bk was fixed.

I As in the Bayesian approach, we can have Rk(xk) varying
during the minimisation of J(xk).
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Strong Constraint 4D-Var in Brief

I Strong constraint 4D-Var is a lot like 3D-Var.

I The Bayesian approach is an MAP method.

I The likelihood approach is an ML method.

I With Gaussian assumptions both approaches reduce to
minimisation of the usual cost function.

I Bk can vary in the minimisation in the likelihood approach,
but not in the Bayesian approach.

I Rl can vary in the minimisation in both approaches.
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Elements Common to Both Approaches

I The system evolves according to a Markov process:

p(xt
k |xt

1:k−1) = p(xt
k |xt

k−1)

I The process is specified by the transition densities p(xt
k |xt

k−1).

I Sometimes we assume a Gauss-Markov process:

xt
k |xt

k−1 ∼ N(Mk(xt
k−1),Qk)

I Qk may be a function of xt
k−1.

I We have a sequence of observations yo
k:k+K to assimilate.

I We seek an estimate of the trajectory xt
k:k+K over the entire

assimilation window.
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Bayesian Approach to Weak Constraint 4D-Var

I Start with the prior distribution p(xt
k |yo

1:k−1).

I By conditional independence, Bayes’s theorem can be written

p(xt
k:k+K |yo

1:k+K ) =
p(xt

k:k+K |yo
1:k−1)p(yo

k:k+K |xt
k:k+K )

p(yo
k:k+K |yo

1:k−1)

I By conditional independence and the Markov condition

p(xt
k:k+K |yo

1:k−1) = p(xt
k |yo

1:k−1)p(xt
k+1|xt

k) . . . p(xt
k+K |xt

k+K−1)

I By conditional independence

p(yo
k:k+K |xt

k:k+K ) = p(yo
k |xt

k) . . . p(yo
k+K |xt

k+K ).

I Weak constraint 4D-Var finds the analysis trajectory by
maximising p(xt

k:k+K |yo
1:k+K ).

I It is an MAP method.
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Bayesian Approach to Weak Constraint 4D-Var (cont)

I If we make the Gaussian background assumption, the
Gauss-Markov assumption, and the Gaussian observation
assumption, then weak constraint 4D-Var reduces to
minimising the cost function

J(xk:k+K ) = (xk − xb
k)TB−1

k (xk − xb
k)

+
k+K∑

l=k+1

(xl −Ml(xl−1))
TQ−1

l (xl −Ml(xl−1))

+
k+K∑
l=k

(yo
l − Hl(xl))

TR−1
l (yo

l − Hl(xl))

I Bk may be a function of yo
1:k−1 (or xb

k), but is fixed during
the minimisation.

I Ql(xl−1) and Rl(xl) may vary during the minimisation.
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Likelihood Approach to Weak Constraint 4D-Var

I Start with an estimate xb
k(yo

1:k−1) with likelihood p(xb
k |xt

k).

I By conditional independence and the Markov condition

p(xb
k , xt

k+1:k+K , yo
k:k+K |xt

k) =

p(xb
k |xt

k)p(xt
k+1:k+K |xt

k)p(yo
k:k+K |xt

k:k+K )

I By the Markov condition

p(xt
k+1:k+K |xt

k) = p(xt
k+1|xt

k)p(xt
k+2|xt

k+1) . . . p(xt
k+K |xt

k+K−1)

I By conditional independence

p(yo
k:k+K |xt

k:k+K ) = p(yo
k |xt

k) . . . p(yo
k+K |xt

k+K )

I Weak constraint 4D-Var finds the analysis trajectory by
maximising p(xb

k , xt
k+1:k+K , yo

k:k+K |xt
k).

I It is a mixed ML/MAP method.
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Likelihood Approach to Weak Constraint 4D-Var (cont)

I If we make the Gaussian background assumption, the
Gauss-Markov assumption, and the Gaussian observation
assumption, then weak constraint 4D-Var reduces to
minimising the cost function

J(xk:k+K ) = (xb
k − xk)TB−1

k (xb
k − xk)

+
k+K∑

l=k+1

(xl −Ml(xl−1))
TQ−1

l (xl −Ml(xl−1))

+
k+K∑
l=k

(yo
l − Hl(xl))

TR−1
l (yo

l − Hl(xl))

I Bk(xk), Ql(xl−1), and Rl(xl) may all vary during the
minimisation.
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Summary

I There are (at least) two approaches to variational DA: the
Bayesian approach and the likelihood approach.

I By ‘Bayesian’ I mean merely using Bayes’s theorem.
I In the Bayesian approach, all three variants of Var are MAP

methods.
I In the likelihood approach, 3D-Var and strong constraint

4D-Var are ML methods, but weak constraint 4D-Var is a
mixed ML/MAP method.

I The usual cost functions are obtained by making Gaussian
assumptions.

I No linear assumptions are necessary.
I In the Bayesian approach:

I Bk may be a function of yo
1:k−1 (or xb

k ), but is held fixed
during the minimisation of the cost function.

I Ql(xl−1) and Rl(xl) may vary during the minimisation.

I In the likelihood approach, Bk(xk), Ql(xl−1), and Rl(xl) may
all vary during the minimisation.
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