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The Global Carbon Cycle 



Fossil Fuel Emissions: Actual vs. IPCC 
Scenarios 

Updated from Raupach et al. 2007, PNAS; Data: Gregg Marland, Thomas Boden-CDIAC 
2010; International Monetary Fund 2010  
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Fate of Anthropogenic CO2 Emissions (2002-2011 average) 

 

Source: Le Quéré et al. 2012; Global Carbon Project 2012 

 

8.3±0.4 PgC/yr      90% 

+ 1.0±0.5 PgC/yr      10% 
2.6±0.8 PgC/yr 

28% 
Calculated as the residual 

of all other flux components 

4.3±0.1 PgC/yr 

46% 

26% 
2.5±0.5 PgC/yr 



Updated from Le Quéré et al. 2009, Nature Geoscience; Data: NOAA 2010, CDIAC 2010 

Key Diagnostic of the Carbon Cycle 
Airborne Fraction of total emissions 
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Modelled Natural CO2 Sinks 

Updated from Le Quéré et al. 2009, Nature Geoscience 
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C4MIP results  
(Friedlingstein et al. 2006) 

 ECHAM5-MPIOM1-JSBACH 
(Raddatz et al, 2007) 

Carbon Cycle-Climate feedback 



Carbon Cycle-Climate feedback: 
breakdown of uncertainties 

IPCC Climate Change 2007: The Physical Science Basis 



The atm. CO2 Station Network 

Mauna Loa!

South Pole!

Pt. Barrow!



Atmospheric CO2 Measurements 

CCDAS inverse modelling period!

... and more stations in 
CCDAS!



Need for Parameter Estimation 

•  Advanced models for coupled systems (e.g. land-atmosphere or 
ocean-atmosphere models) involve the coupling of many 
biological, chemical and physical processes 

•  Increase in the complexity of those models also leads to an 
increase in the number of parameters 

•  Prior parameter values usually based on “expert knowledge” 
•  If no reliable estimates can be provided for a parameter, it 

remains highly uncertain 
•  Uncertainty of the parameter might substantially contribute to 

the overall model output uncertainty 
•  Parameter optimisation methods can be used to constrain the 

parameters against observations 



!  Assimilation of CO2 
with an inverse modelling system 

CO2 station 
concentration 

Biosphere Model: 
BETHY 

Atmospheric Transport  
Model: TM2 

Misfit to  
observations 

Model parameter 

Fluxes 

 Misfit 1 Forward Modeling: 

Parameters –> Misfit 

Inverse Modeling: 

Parameter optimization 



!  CCDAS 

sensitive the results are with respect to this parameter,
uncertainty of those parameters might substantially contrib-
ute to the overall output uncertainty.
[4] With significant problems associated with both

“bottom‐up” and “top‐down” approaches, one possible way
out is the design of carbon cycle data assimilation systems,
which use the observed data (for instance atmospheric CO2
measurements) to systematically constrain ecosystem model
parameters. Current approaches [Kaminski et al., 2003;
Rayner et al., 2005; Scholze et al., 2007] do not use any
regionalization, but rely on globally applicable, universal
parameters. That means, the parameters are not regionally
differentiated, and if they are differentiated at all, then only
by plant type.
[5] This paradigm of universality, however, deserves a

closer look, because carbon fluxes might be determined by
regional differences that are outside the realm of what the
model represents. For example, if the model does not contain
a land use change component and no information about the
history of a site is available, then these unknown conditions
can be subsumed under a common simplified formulation
which requires parameterization. In such a case, we are back
to the need of geographical differentiation that flux inversions
need to follow inevitably. Such geographical differentiation
is the subject of the present study.
[6] In this workwe use the Carbon Cycle DataAssimilation

System (CCDAS) [Rayner et al., 2005] in order to deter-
mine a detailed pattern of the atmosphere‐land fluxes and
its uncertainties. CCDAS provides the possibility to con-
sider both global and regional process parameters. Using the
CCDAS framework, current fluxes of CO2 into the atmo-
sphere can bemapped together with optimal parameter values
and their uncertainties. Those parameter uncertainties can
also be propagated to any model output quantity to obtain its
corresponding uncertainty. In this study, this will be applied
to CO2 fluxes.

2. Methodology

[7] The CCDAS used here is an estimator algorithm for a
set of terrestrial biosphere model parameters, which uses
automatically generated adjoint code (first derivative) for
parameter optimization, and Hessian model code (second
derivative) for estimating posterior parameter uncertainties.
As its ecosystem model, CCDAS uses the Biosphere Energy
Transfer and Hydrology scheme (BETHY) [Knorr, 2000].
This model simulates carbon assimilation and soil respira-

tion within a full energy and water balance and phenology
scheme. Calculated fluxes are then mapped to atmospheric
concentrations using the atmospheric transport model TM2
[Heimann, 1995].
[8] The CCDAS framework has been previously described

in detail by Scholze [2003] and Rayner et al. [2005]. There-
fore, we provide only a brief summary and highlight differ-
ences in our setup. The data assimilation is performed in two
steps as outlined in Figure 1. In the first step, the full BETHY
model is used to assimilate global monthly fields of the
fraction of Absorbed Photosynthetically Active Radiation
(fAPAR) for optimizing parameters controlling soil moisture
and phenology. In the second step, a reduced version of
BETHY is used to assimilate atmospheric CO2 concentration
observations. In contrast to the setup used by Rayner et al.
[2005], we only optimize the soil carbon part of BETHY
in the second step, keeping all parameters controlling net
primary productivity (NPP) fixed. In earlier studies with
CCDAS [Rayner et al., 2005; Scholze et al., 2007], these
parameters were found to be constrained relatively little by
the assimilation of CO2 observations. In practice, fixing NPP
parameters is performed via an additional forward simulation
over the integration period of 25 years immediately after the
first assimilation step. We need to note that the uncertainties
estimated in this study are only a lower bound because they
do not account for the effect of the uncertainty of NPP related
parameters on posterior uncertainties of the remaining
parameters, or uncertainties of diagnostics. Instead of aiming
for the most realistic uncertainty estimates of parameters and
CO2 fluxes, the present study aims at comparing two cases
to test the effect of parameter regionalization on estimated
fluxes and their posterior uncertainty covariance.

2.1. Data Assimilation
[9] In this work, we focus on the second assimilation step

(see Figure 1), where the reduced BETHY version uses
the NPP from the forward simulation and the soil moisture
and temperature fields from the first assimilation step as
input data. The atmospheric transport model then maps fluxes
onto atmospheric concentrations for the atmospheric grid
cells representing a list of remote monitoring stations (see
Figure 2).
[10] CCDAS can be operated in three different modes. In

the calibration mode, an optimal set of parameters is derived
from atmospheric CO2 concentration observations using an
adjoint approach. The calibrated model can then be used for
diagnostic simulations (over the calibration period) using the

Figure 1. CCDAS structure.

ZIEHN ET AL.: PARAMETER REGIONALIZATION WITH CCDAS GB2021GB2021

2 of 13



15 !  CCDAS 

•  Further simplification of step 2 
•  13 plant functional types 
•  6 process parameters 

 5 global 
 1 plant functional type dependent 

sensitive the results are with respect to this parameter,
uncertainty of those parameters might substantially contrib-
ute to the overall output uncertainty.
[4] With significant problems associated with both
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which use the observed data (for instance atmospheric CO2
measurements) to systematically constrain ecosystem model
parameters. Current approaches [Kaminski et al., 2003;
Rayner et al., 2005; Scholze et al., 2007] do not use any
regionalization, but rely on globally applicable, universal
parameters. That means, the parameters are not regionally
differentiated, and if they are differentiated at all, then only
by plant type.
[5] This paradigm of universality, however, deserves a

closer look, because carbon fluxes might be determined by
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model represents. For example, if the model does not contain
a land use change component and no information about the
history of a site is available, then these unknown conditions
can be subsumed under a common simplified formulation
which requires parameterization. In such a case, we are back
to the need of geographical differentiation that flux inversions
need to follow inevitably. Such geographical differentiation
is the subject of the present study.
[6] In this workwe use the Carbon Cycle DataAssimilation

System (CCDAS) [Rayner et al., 2005] in order to deter-
mine a detailed pattern of the atmosphere‐land fluxes and
its uncertainties. CCDAS provides the possibility to con-
sider both global and regional process parameters. Using the
CCDAS framework, current fluxes of CO2 into the atmo-
sphere can bemapped together with optimal parameter values
and their uncertainties. Those parameter uncertainties can
also be propagated to any model output quantity to obtain its
corresponding uncertainty. In this study, this will be applied
to CO2 fluxes.

2. Methodology

[7] The CCDAS used here is an estimator algorithm for a
set of terrestrial biosphere model parameters, which uses
automatically generated adjoint code (first derivative) for
parameter optimization, and Hessian model code (second
derivative) for estimating posterior parameter uncertainties.
As its ecosystem model, CCDAS uses the Biosphere Energy
Transfer and Hydrology scheme (BETHY) [Knorr, 2000].
This model simulates carbon assimilation and soil respira-

tion within a full energy and water balance and phenology
scheme. Calculated fluxes are then mapped to atmospheric
concentrations using the atmospheric transport model TM2
[Heimann, 1995].
[8] The CCDAS framework has been previously described

in detail by Scholze [2003] and Rayner et al. [2005]. There-
fore, we provide only a brief summary and highlight differ-
ences in our setup. The data assimilation is performed in two
steps as outlined in Figure 1. In the first step, the full BETHY
model is used to assimilate global monthly fields of the
fraction of Absorbed Photosynthetically Active Radiation
(fAPAR) for optimizing parameters controlling soil moisture
and phenology. In the second step, a reduced version of
BETHY is used to assimilate atmospheric CO2 concentration
observations. In contrast to the setup used by Rayner et al.
[2005], we only optimize the soil carbon part of BETHY
in the second step, keeping all parameters controlling net
primary productivity (NPP) fixed. In earlier studies with
CCDAS [Rayner et al., 2005; Scholze et al., 2007], these
parameters were found to be constrained relatively little by
the assimilation of CO2 observations. In practice, fixing NPP
parameters is performed via an additional forward simulation
over the integration period of 25 years immediately after the
first assimilation step. We need to note that the uncertainties
estimated in this study are only a lower bound because they
do not account for the effect of the uncertainty of NPP related
parameters on posterior uncertainties of the remaining
parameters, or uncertainties of diagnostics. Instead of aiming
for the most realistic uncertainty estimates of parameters and
CO2 fluxes, the present study aims at comparing two cases
to test the effect of parameter regionalization on estimated
fluxes and their posterior uncertainty covariance.

2.1. Data Assimilation
[9] In this work, we focus on the second assimilation step

(see Figure 1), where the reduced BETHY version uses
the NPP from the forward simulation and the soil moisture
and temperature fields from the first assimilation step as
input data. The atmospheric transport model then maps fluxes
onto atmospheric concentrations for the atmospheric grid
cells representing a list of remote monitoring stations (see
Figure 2).
[10] CCDAS can be operated in three different modes. In

the calibration mode, an optimal set of parameters is derived
from atmospheric CO2 concentration observations using an
adjoint approach. The calibrated model can then be used for
diagnostic simulations (over the calibration period) using the

Figure 1. CCDAS structure.
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!  Process parameters 

Parameter Description Global By PFT 

Q10,f
 Soil respiration temperature factor, fast pool X 

Q10,s
 Soil respiration temperature factor, slow pool X 

τf
 Fast pool soil carbon turnover time X 

κ
 Soil moisture dependence parameter X 

fs
 Fraction of fast soil decomposition X 

β
 Net CO2 sink factor X 



BETHY Plant Functional Types 

Rayner et al. (2005) 



!  CCDAS 
•  Iterative minimisation of the cost function  

•  Optimisation uses the gradient of J(x) with respect to 
the parameters 

•  Second order derivatives (Hessian) at minimum 
provide approximation of parameter uncertainties (a 
posteriori): Cpo

-1 = ∂2J(xpo) / ∂x2 

•  Uncertainties on target quantities (e.g. net flux, NEP) 
via linearisation of model (Jacobian matrix):  

 CNEP = ∂M/ ∂x Cpo ∂M/ ∂xT 

•  All derivatives provided via automatic differentiation 
of model code (TAF) 

J(x) = (x ! x0 )
T Cx0

!1(x ! x0 )( )+ M (x)! c( )T Cc
!1 M (x)! c( )



Parameter estimation using a 
particle filter 



Parameter estimation using a 
particle filter 

1.  Initial selection: 

1  Uniform distribution 
  What to pick as limits? 

2  Gaussian distribution 
  Physically unreasonable values  

 
2. Evaluation: 

  
 Cost function is evaluated for each parameter 

 J(x) = M (x)! c( )T Cc
!1 M (x)! c( )



Parameter estimation using a 
particle filter 

3. Weighting: 
1  Gaussian: 
 
 

2  Lorenz: 

 

4. Create parameter pdfs: 
1  Gaussian pdf 

  Weighted mean and weighted standard deviation 
2  Constructed pdf 

   tricky 

5. Redraw parameters: 
  

w = exp !cf
cf0( )

w = 1
1+cf



!  Results 
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•  64 particles 
•  40 iterations 
•  Gaussian initial sampling 
•  Gaussian resampling 



!  Results 
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!  Parameter transformations 

Perform the optimisation in a transformed parameter 
space, thus ensuring that when back-transformed 
the optimal parameter values are within the 
physically meaningful domain 
 
Different transformations: 
  Log: limits parameters above a specified value 
 Double bounded log: limits parameters between 

two values 



!  Results 
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!  Comparison to CCDAS 
CCDAS Particle Filter 

Cost function Value 9667 17572 

Parameter Initial 
Value 

CCDAS 
optimised 

value 

Particle Filter 
optimised 

value 

Initial 
uncertainty 

CCDAS 
optimised 

uncertainty 

Particle Filter 
weighted standard 

deviation 

1	
  Q10,f	
   1.5	
   1.069	
   1.40357865	
   0.75	
   0.016	
   0.063	
  

2	
  Q10,s	
   1.5	
   1.817	
   2.0419128	
   0.75	
   0.019	
   0.080	
  

3	
  τf	
   1.5	
   3.435	
   12.8101455	
   3.0	
   0.120	
   1.146	
  

4	
  κ	
   1	
   0.571	
   0.3050932	
   9.0	
   0.011	
   0.091	
  

5	
  fs	
   0.2	
   0.735	
   0.55894275	
   0.2	
   0.004	
   0.033	
  



!  Comparison to CCDAS 

CCDAS 
Particle Filter 



!  Conclusions 

 Have set up a particle filter to estimate terrestrial 
carbon cycle parameters 

 Have included parameter transformations to ensure 
physically meaningful optimal parameter values 

 
Still need to 
 Determine which set up provides the most consistent 

results 
 Would like to have results closer to that of CCDAS 


