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The Filtering Problem Framework: discrete/continuous time

X the signal process - “hidden component”

Y the observation process - “the data”

The filtering problem : Find the conditional distribution of the signal Xt given
Yt = σ(Ys, s ∈ [0, t ]), i.e.,

πt (A) = P(Xt ∈ A|Yt), t ≥ 0, A ∈ B(Rd ).

Continuous framework:

dXt = f (Xt)dt + σ(Xt)dVt ,

dYt = h(Xt)dt + dWt .

Discrete framework:

{Xt}t≥0 Markov chain P (Xt ∈ A|Xt−1 = xt−1) = τt(A|xt−1),

{Xt , Yt}t≥0 P (Yt ∈ dy |Xt = xt) = gt(y |xt)dy
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The Filtering Problem How do we define an approximation ?

The description of a numerical approximation for the solution of the filtering
problem should contain three parts:

1. The method of recording the approximation:

particle approximations Gaussian approximations
(aj (t)
︸ ︷︷ ︸
weight

, v1
j (t) , . . . , vd

j (t)
︸ ︷︷ ︸

position

)n
j=1 (aj (t)

︸ ︷︷ ︸
weight

, v1
j (t) , . . . , vd

j (t)
︸ ︷︷ ︸

mean

, ω11
j (t) , . . . , ωdd

j (t)
︸ ︷︷ ︸

covariance matrix

)n
j=1

πt  πn
t =

∑n
j=1 aj (t) δvj (t) πt  πn

t =
∑n

j=1 aj (t) N
(
vj (t) , ωj (t)

)

2. The law of evolution of the approximation:

particle approximations Gaussian approximations

πn
t

mutation
︷︸︸︷
−→
model

π̄n
t+δ

selection
︷︸︸︷
−→

{Ys}s∈[t,t+δ]

πn
t+δ πn

t

forecast
︷︸︸︷
−→
model

π̄n
t+δ

assimilation
︷︸︸︷
−→

{Ys}s∈[t,t+δ]

πn
t+δ

3. The measure of the approximating error:

sup
{ϕ∈Cb, ‖ϕ‖≤1}

E [|πn
t (ϕ) − πt(ϕ)|] , π̂t − π̂n

t , ‖πn
t − πt‖TV .
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The Filtering Problem Quantized information = particles

The quantized information is modelled by n stochastic processes

{pi(t), t > 0} i = 1, ..., n, pi(t) ∈ RN .

We think of the processes pi as the trajectories of n (generalized)
particles.

Typically N > d , where d is the dimension of the state space.

πn
t = Λn

t (pi(t), t > 0 i = 1, ..., n).

Generalized particle filters:

classical particle filters
gaussian approximations
wavelets
grid methods
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From Gaussian to particle approximations Generalized particle filters

Equidistant partition of the interval [0, T ] with mesh size δ.

Algorithm for πn
t =

∑n
j=1 āj(t)N(vj(t), ωj(t)).

Step 1: Initialisation

• Weight, mean, variance (aj(0) = 1/n, vj(0) ∼ π0, ωj(0) = α), α ∝ 1/
√

n.

Step 2: Prediction/Forecast [(i − 1)δ, iδ)

dvj(t) = f (vj(t))dt +
√

1 − ασ(vj(t))dV (j)
t ,

dωj(t) = ασ2(vj(t))dt , ωj((i − 1)δ) = α

Step 3: Correction/Assimilation (at iδ):

daj(t) = aj(t)h(vj(t))dYt , aj((i − 1)δ) = 1

āj(t) =
aj(t)∑n

i=1 ai(t))
.

• Replace N(vj(iδ−), ωj(iδ−)) with oj(iδ) particles N(vj(iδ), α). (use TBBA)

vj(iδ) ∼ N(vj(iδ−), ωj(iδ−)), E[oj(iδ)] = nān
j (t).

• Re-index the positions of the particles N(vj(iδ), ωj(iδ)).
• Re-initialize aj(iδ) = 1.
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From Gaussian to particle approximations Generalized particle filters

Theorem (DC-Li (2012))

sup
{ϕ∈Cm

b , ‖ϕ‖≤1}
E[|πn

t (ϕ) − πt(ϕ)|] ≤
c
√

n
.

Theorem (DC-Li (2012))

The process
√

n(πn
t − πt) converges in distribution to a process Ū.

πn
t ∼ πt +

Ū
√

n
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From Gaussian to particle approximations Numerical example

dXt =f (Xt)dt + dVt ,

dYt =h(Xt)ds + dWt ,

f (x) = 0.3 tanh(0.3x), W and V standard Bm, h(x) = 0.8x .
X0 = 0.0, T = 10.0.
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Figure: |πn
T (ϕ) − πT (ϕ)| /|πT (ϕ)| for ϕ(x) = x2
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From Gaussian to particle approximations Numerical example
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Figure: |πn
T (ϕ) − πT (ϕ)| /|πT (ϕ)| for ϕ(x) = x3
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From Gaussian to particle approximations Cubature methods

The Kallianpur-Striebel formula

πt (ϕ) =
ρt (ϕ)

ρt(1)
,

where

ρt (ϕ) = E

[

ϕ(Xt) exp

(∫ t

0

m∑

k=1

hk (Xs) dY k
s −

1
2

∫ t

0

m∑

k=1

hk (Xs)
2 ds

)∣∣
∣
∣
∣
Yt

]

= E[Λt(V , Y )] =

∫

ω∈C([0,∞),Rd )

Λt(ω, Y )dPV (ω)

A three-step scheme:

approximate Λt,x with an explicit/simple version Λ̃t

replace PV with PṼ = 1
n

∑n
i=1 δωi - Ṽ approximates the signature of V

control the computational effort (use the TBBA)

ρt(ϕ) '
1
n

n∑

i=1

Λ̃t,x(ωi)
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From Gaussian to particle approximations Cubature methods

Theorem (DC, Ortiz-Latorre 2011)

E[|πδ,n
t (ϕ) − πt (ϕ) |] ≤ C

(

δα + δ
m−1

2 +
1
√

n

)

.

The cubature method is essentially deterministic. The diffusion
approximation uses a set of ordinary differential equations to approximate
the distribution of the solution of the SDE.

The (exponentially) increase in the computational effort is controlled by
the TBBA (a random method).
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Numerical Implementation

Consider the 1-dimensional Benes filter:

dXt = μσ tanh
(

μXt

σ

)

dt + σdVt

dYt = (h1Xt + h2)dt + dUt ,

Then

ρt ' w+N (A+
t /(2Bt), 1/(2Bt)) + w−N (A−

t /(2Bt), 1/(2Bt)),

where

w±
t , exp

(
(A±

t )2/(4Bt)
)
/(exp

(
(A+

t )2/(4Bt)
)

+ exp
(
(A−

t )2/(4Bt)
)
)

A±
t , ±

μ

σ
+ h1Ψt +

h2 + h1x0

σ sinh (h1σt)
−

h2

σ
coth (h1σt) ,

Bt ,
h1

2σ
coth (h1σt) ,

Ψt ,
∫ t

0

sinh(h1σs)

sinh(h1σt)
dWs,
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Numerical Implementation

Comparison with the classical particle filter implemented using the Euler
scheme plus the TBBA to perform the resampling at each time step.
Number of launches M = 10
Number of particles used in the KLV algorithm N = 100
Number of particles used for the classical particle N = 10000
Parameter values

μ = 0.05, h1 = 0.8, h2 = 0.0, σ = 1.0, x0 = 0.0 T = 20.0.

Dan Crisan (Imperial College London) Particle versus Gaussian Approximations 5 June 2013 13 / 25



Why is the high-dimensional problem hard ? Space - The Final Frontier

High dimensional problems are harder than their low dimensional
counterparts. Example:

Consider

Π1 = N ((0, . . . , 0), Id ) (mean (0, . . . , 0) and covariance matrix Id ).

Π2 = N ((1, . . . , 1), Id ) (mean (0, . . . , 0) and covariance matrix Id ).

d(Π1, Π2)TV = 2P [ |X | ≤ d/2 ], X ∼ N(0, 1).

as d increases, the two measures get further and further apart, becoming
singular w.r.t. each other exponentially fast.

it becomes increasingly harder to use standard importance sampling, to
construct a sample from Π2 by using a proposal from Π1.

Solution: The problem of ‘moving’ from Π1 to Π2 is equivalent to that of
moving from a standard normal distribution N (0, 1) to a normal distribution
N (d , 1) (the total variation distance between N (0, 1) and N (d , 1) is the same
as that between Π1 and Π2). Rather than jumping from N (0, 1) to N (d , 1) in
one step we get there in d steps: at each step moving from N (k − 1, 1) to
N (k , 1) for index k = 1, 2, . . . , d . This algorithm can be immediately
transferred to the corresponding multidimensional set-up.
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Why is the high-dimensional problem hard ? Space - The Final Frontier

BICKEL, P., LI, B. & BENGTSSON, T. (2008). Sharp failure rates for the
bootstrap particle filter in high dimensions.

‘Unfortunately, for truly high dimensional systems, we conjecture that
the number of intermediate steps would be prohibitively large and
render it practically infeasible.’

SMC algorithms with computational cost O(Nd2) are stable. They require
O(d) intermediate steps. If one takes O(d1+δ) steps with any δ > 0, then the
corresponding essential sample size (ESS) converges in probability to N and
the Monte Carlo error is the same as with i.i.d. sampling. If −1 < δ < 0 then
ESS will go-to zero. That is, O(d) steps are a critical order for the stability of
the algorithm.
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Why is the high-dimensional problem hard ? Stability for the high-dimensional problem

Sequential Monte Carlo

Sample from a target distribution with density Π on Rd with respect to
Lebesgue measure, known up to a normalizing constant. We introduce a
sequence of ‘bridging’ densities which start from an easy to sample target and
evolve toward Π:

Πn(x) ∝ Π(x)φn , x ∈ Rd , (1)

for 0 < φ0 < ∙ ∙ ∙ < φn−1 < φn < ∙ ∙ ∙ < φp = 1. The effect of exponentiating with
the small constant φ0 is that Π(x)φ0 is much ‘flatter’ than Π. One can sample
from the sequence of densities using an SMC sampler, which is, essentially, a
Sequential Importance Resampling (SIR) algorithm or particle filter that
targets the sequence of densities:

Π̃n(x1:n) = Πn(xn)
n−1∏

j=1

Lj(xj+1, xj)

with domain (Rd )n of dimension that increases with n = 1, . . . , p; here, {Ln} is
a sequence of artificial backward Markov kernels that can, in principle, be
arbitrarily selected.
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Why is the high-dimensional problem hard ? Stability for the high-dimensional problem

Let {Kn} be a sequence of Markov kernels of invariant density {Πn} and Υ a
distribution; The backward Markov kernels Ln are chosen as follows:

Ln(x , x ′) =
Πn+1(x ′)Kn+1(x ′, x)

Πn+1(x)
.

The Algorithm

0. Sample X 1
0 , . . . X N

0 i.i.d. from Υ and compute the weights for each particle
i ∈ {1, . . . , N}:

w0(xi
0) =

Π0(xi
0)

Υ(xi
0)

.

Set n = 1 and l = 0.

1. If n ≤ p, for each i sample X i
n | xi

n−1 from Kn and calculate the weights

wn(xi
l:n−1) =

Πn(xi
n−1)

Πn−1(xi
n−1)

wn−1(xi
l:n−2)

with the convention xi
0:−1 ≡ xi

0.
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Why is the high-dimensional problem hard ? Stability for the high-dimensional problem

Calculate the Effective Sample Size (ESS):

ESS(l,n)(N) :=

(∑N
i=1 wn(xi

l:n−1)
)2

∑N
i=1 wn(xi

l:n−1)
2

. (2)

If ESS(l,n)(N) < a:
resample x1

n , . . . xN
n according to their normalised weights

wn(xi
l:n−1)/

N∑

j=1

wn(x
j
l:n−1) ; (3)

set l = n;
re-initialise the weights by setting wn(xi

l:n−1) ≡ 1, 1 ≤ i ≤ N;
let x1

n , . . . xN
n now denote the resampled particles.

Set n = n + 1.
Return to the start of Step 1.
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Why is the high-dimensional problem hard ? Stability for the high-dimensional problem

Theorem (Beskos, DC, Jasra, 2011, (no resampling))

Under additional assumptions, for any fixed N > 1, ESS(0,d)(N) converges in
distribution to

εN :=
[
∑N

i=1 eXi ]2
∑N

i=1 e2Xi

where Xi
i.i.d.
∼ N (0, σ2

?).

Theorem (Beskos, DC, Jasra, 2011, (with resampling))

Under additional assumptions, for any fixed N > 1, any k ∈ {1, . . . , m∗ + 1},
times tk−1 < tk , and sk (d) ∈ (tk−1(d), tk (d)) any sequence converging to a
point sk ∈ (tk−1, tk ), we have that ESS(tk−1(d),sk (d))(N) converges in distribution
to a random variable

[
∑N

i=1 eX k
i ]2

∑N
i=1 e2X k

i

where X k
i

i.i.d.
∼ N (0, σ2

tk−1:sk
) and σ2

tk−1:sk
≤ σ2

?.
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Application to the observed Navier-Stokes equation

2D Stochastic Navier-Stokes equation on the torus T2 , [0, L) × [0, L) with
periodic boundary conditions:

∂u
∂t

− νΔu + u ∙ ∇u + ∇p = f + W (t , x) for all (x , t) ∈ T2 × (0,∞), (4)

∇ ∙ u = 0 for all (x , t) ∈ T2 × (0,∞),

u(x , 0) = u0(x) for all x ∈ T2.

u : T2 × [0,∞) → R2 - the velocity
p : T2 × [0,∞) → R2 - the pressure
f : T2 → R2 - the forcing
W (t , x) - noise

H ,
{

L − periodic trig. pol. u : [0, L)2 → R2
∣
∣
∣∇ ∙ u = 0,

∫

T2
u(x)dx = 0

}L2(T2))2

P : (L2(T2))2 → H - the Leray-Helmholtz orthogonal projector. An
orthonormal basis for H is given by

ψk (x) ,
k⊥

|k |
exp

(
2πik ∙ x

L

)

k = (k1, k2)
> ∈ Z2 \ {0} k⊥ = (k2,−k1)

>.
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Application to the observed Navier-Stokes equation

For u ∈ H .
u =

∑

k∈Z2\{0}

uk (t)ψk (x).

W (t , x) =
∑

k∈Z2\{0}

εkψt(x)W k
t ∈ H

{W k
t }(t≥0, k∈Z2\{0}) i.i.d. Brownian motions and

∑

k∈Z2\{0}

(4π2|k |2)sε2
k < ∞ for s ∈ R,

and then W (t , ∙) ∈ H.
The stochastic Navier-Stokes equation can be written as

du
dt

+ νAu + B(u, u) = f + W (t , x). (5)

• A = −PΔ is the Stokes operator
• B(u, u) = P(u ∙ ∇u)
• f is the original forcing projected into H.
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Application to the observed Navier-Stokes equation

The equations for the modes:

duk (t) =



−νλk uk (t) − αl,j
k

∑

l+j=k

ul(t)uj(t) + fk



dt + εk dW k
t .

αl,j
k =

{
2πi(l2 j1−l1 j2)(k1 j1+k2 j2)

L|k||l||j| if k = l + j ,
0 otherwise;

Define the projection operators Pλ : H → H and Qλ : H → H by

Pλu =
∑

k∈Z2\{0}
|2πk|2<λL2

uk (t)ψk (x), Qλ = I − Pλ;

and consider the projected eigenvalues, we obtain the following evolution
equation for the approximation of uk (t), which is denoted by ũk (t), for each
k ∈ Z \ {0} with |2πk |2 < λL2:

dũk (t) =

(

−νλk ũk (t) − αl,j
k

∑

Γ

ũl(t)ũj(t) + fk

)

dt + εk dW k
t ; (6)

where the set Γ ,
{

(l , j)
∣
∣
∣l + j = k and |2πl |2 < λL2 and |2πj |2 < λL2

}
.
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Application to the observed Navier-Stokes equation

Model parameters

• we use k1, k2 = −32, ..., 0, ...32 (i.e. a 642 grid for the discrete fourier
components).
• Smoothing problem approximate p(x0|y1:5) where each yi is a 4x4 grid on
the torus and

yi(j) = u(xj , ti) + N(0, 0.2).

• the dynamics are initialised by a random sample from the prior N(0, δAα)
• for the prior, δ = 5 and α = 2.2.
• torus size is 2π.
• forcing is ∇cos(κ ∙ x) with κ = (1, 1) for the stationary regime and κ = (5, 5)
for the chaotic
• ν is 1/50 for chaotic and 1/10 for stationary

MCMC plot: computation cost roughly 105 iterations per day, i.e. with the slow
mixing need more than 10 days for a decent but not super-reliable answer.

SMC plots: computational cost around 18 hours for N=500 particles and 5
intermediate steps.

Numerics done by N. Kantas (UCL).
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Application to the observed Navier-Stokes equation
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