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Problem description
Sea level change: Antarctica & Greenland contribution

Motivations: Computation of the ice discharge of Antarctica and Greenland
in the near future, thanks to simulations of polar ice sheet model.

Ice discharge:

@ narrow outlets,

closely linked to ice velocities,

highly sensitive to basal friction
parameters,

highly sensitive to bedrock
topography.

Surface ice velocities
[Rignot et al. 2011]
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Problem description

Basal parameters
Typically 2 types of basal parameters are mandatory for simulation:

e bedrock topography Bsc(x)

@ basal friction parameters in basal shear stress relationship

_ _C(Xa t)|ub(X7 t)’m(x’t)_lub(xv t) if Tb(X7 t) = Tmelt
Tl t) = { 0 if Ty(x, ) < Tomer

with uy, basal velocity, T}, basal ice temperature, C > 0 and m basal
friction parameters.

Simplified relationship

_ _B(X)Ub(xa t) if Tb(X7 t) = 7_me/
To(x:t) = { 0 if Tp(x,t) < Tme,i

with 8 > 0.
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What is behind 3

@ sliding of ice over the bed

o deformation of the bed

due to
o effective pressure = ice pressure - water pressure
(ex: thin water layer between ice and bedrock, water in cavities, ...)
o rock debris
@ sediments

o ...
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Poorly known basal parameters ...

[llustration for bedrock topography with Bedmap2 [Fretwell et al. 2013]

Bed elovation (m asl)

Bedmap2 estimation Estimated uncertainty
of bed topography of bed topography
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Fortunately surface observations

@ lIce velocity

@ Surface elevation (ex.: [Bamber et al, 2009])

Altitude de la surface (en m)

0 500 1000 1500 2000 2500 3000 3500 4000
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Problem description

Overview

What we want:

@ Build estimation of actual basal parameters:
o bedrock topography B,

o sliding coefficient 3 = 10¢
o Give an estimation of the uncertainty of our estimation.
What we have:
@ 20 years of observations of surface elevation and surface velocities
@ Sparse observations of bedrock topography

o Time dependent ice sheet model

What we need: efficient data assimilation system

To develop the method: Synthetic experiments along a flowline
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Large-scale ice sheet model
Outline

© Large-scale ice sheet model

DARC Seminar (Reading) ETKF for ice sheet i October 30, 2013 11 / 50



Large-scale ice sheet model
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Simplified physics
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Large-scale ice sheet model

Model equations: mass balance

Flowline SIA model (1D + time) with a sliding law

Mass balance equation:

8j_b _8(UH)
ot " Ox

H\._, = Ho
with

@ x latitude, t time

@ H(x,t) ice thickness, Hp(x) initial ice thickness

e U(x, t) ice velocity averaged over ice thickness

@ bm(x, t) surface mass balance rate
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Large-scale ice sheet model

Model equations: dynamics (1)

Vertically averaged ice velocity is a diagnostic variable = no partial
derivative in time involved, computed from geometry at each time step

U = Uger + Uslid
S = Bepe+H
H > 0

with
@ S(x,t) surface elevation
@ Bsoc(x, t) bedrock topography
@ uger ice velocity component due to ice deformation

@ ug;y ice velocity component due to sliding
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Large-scale ice sheet model

Model equations: dynamics (2)

Uger is the averaged velocity due to ice deformation. Under SIA
approximation

9S H? <05>3 H4

Udef = —a1 g? a

with a1, a» given coefficients

Uslig is the velocity component due to basal sliding

1 oS
Uglid = —Bpi gH

Ox

with 3 > 0 basal friction coefficient.
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Model equations: mass balance rate

bm(x,t) = Acc(x, t) 4+ Abl(x, t)

@ Acc(x,t) > 0 ice accumulation rate (mainly snow precipitation)
e Abl(x,t) <0 ice ablation rate (snow melting)

Both are function of surface temperature Tg

Ts(x, t) = Fgim(t) + Ax +S(x, t)
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Outline

© Data assimilation
@ Twin experiment
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Data assimilation Twin experiment

Twin experiment

What we control: at each grid point
@ Ice thickness H
@ Bedrock topography Bsoc

o Basal parameter 3

What we observe: each year during 20 years (20 observation times)
@ Surface elevation S at each grid point (o5 =2 m)
e Surface ice velocity us at each grid point (o, =3 m/yr)

@ Bedrock topography Bsoc at few grid points (o = 20 m)

DA system:

o ETKF [Wang et al., 2004], [Ott et al. 2004]
o LETKF [Hunt et al., 2007]
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Data assimilation Twin experiment

Background and reference states (1)
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Background and reference states (2)
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Background and reference states (3)
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Outline

© Data assimilation

o ETKF and LETKF
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Data assimilation ETKF and LETKF

Basis of Ensemble Kalman Filter (EnKF)

Ensemble formulation:

Let x, ensemble of N.,s state estimations of model at time

(in our case, ice thickness, sliding coefficient and bedrock topography)
° XS(') ith member of ensemble, i = 1,..., Neps
@ X, ensemble mean

o P, ensemble covariance matrix

2 step algorithm:

o Forecast: Predict x,’i from x7 _; using the model.

@ Analysis: Correct xi with observations y¢ (in our case, surface

velocities, surface elevation and sparse bedrock topography) to
produce x3.
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Data assimilation ETKF and LETKF

Sequential data assimilation: EnKF sequence

state
f
Xk—2
Yio1
A
N A
Yi

Ye o
k—2 k—1 kot
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Data assimilation ETKF and LETKF

Sequential data assimilation: EnKF sequence

state
f
Xk—2
Yi1
A
H Xz o
| A
A yo
k
Yi 2
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Data assimilation ETKF and LETKF

Sequential data assimilation: EnKF sequence

state

f

Xk—2
Yi1
A

X7,

| A

» , yi
Yk-2 X1
k—2 k—1 k t
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Data assimilation ETKF and LETKF

Sequential data assimilation: EnKF sequence

state

k—2 k—1 kot
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Data assimilation ETKF and LETKF

Sequential data assimilation: EnKF sequence

state
f
Xk—2
Yio1
A
|
f
Xk
|
(i)XZ
Yi
k—2 k—1 kot

DARC Seminar (Reading) October 30, 2013 26 / 50




Data assimilation ETKF and LETKF

Ensemble Transform Kalman Filter (ETKF)

Detailled in [Hunt et al. 2007], [Harlim and Hunt 2007].

Analysis step

Build an ensemble {x"(i), i=1... Ne,,s} such as X minimum of

T =7 (x—x) P (%) 4 2 (v° ~ HE) TR (v° — H(x)

and P2 ~ P?.

Attention: rank(Pg) < Neps — 1 by construction so Pf not invertible.

e
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First hypothesis

Transform Filter

Assume x = X + Xfw with
o wWE RNens
o X' matrix whose ith column is xf(') —xf
and minimise J (X 4+ X w)
Why?

o w e RNens x € R™ and Neps < ny (generally).
o (x —xf) Tprt (x —xf) = wTXf TP X w (back d
A = A ground term)
if V = Vect ({xf(i) —xfi= 1...Ne,,5}>,

T. . .
Pf = ﬁX’rX'r invertible as a restriction to V.
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Data assimilation ETKF and LETKF

Where are we?

N -1 il

4= <y° — ’H(if + Xfw)> ! R! (yo — 'H(if + Xfw)>

1
2

Attention: 7 invariant on Ker(X) and dim(Ker(Xf)) > 1.
= non unicity of w for minimal 7.
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Data assimilation ETKF and LETKF

Gauge-fixing term

Minimise under constraints

To avoid this invariance we can minimise J over the w that have a null
orthogonal projection on the kernel of X*

-1
(INens - XfT (XFXFT) Xf) W — 0

It is equivalent to add a gauge-fixing term G into J

N-—-1 =il
G(w) = ——w’ (l,\,e"s ~xfT (xfxfT) xf) w

and minimise the new cost function j

DARC Seminar (Reading) October 30, 2013 30 / 50



Where are we?

~ — T
J(w) = %WTW% (y" —H(x" + XfW)) R (y" —HEX + X w))
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Second hypothesis

Linear approximation for observation operator
H (if + Xfw> ~ yf +Yfw

with

° yf(') — N (Xf(’)>

1 Nens ()
of fu
oV =2y
i=1
o matrix Y’ whose ith column is yf(') —yf

Finally, we search to minimise a quadratic cost function

TH(w) = %WTW + % (yo _yf - wa> TRt <yo _yf - wa)
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ETKF analysis step

Direct computation of:
o w?=P?YfTR! <y° —F) (minimum of 7*)

o P? = ((Ne,,s 1)y, + YfTR—l\(fy1 (= Hess (i*(wa))fl )

~ \1/2
o W2 = ((Nens - 1)Pa) (symetric square root matrix)

Analysis ensemble {x"(i), i=1... Ne,,s} is defined as

o x? = x" 4 X'W? (mean)

o X2 = XfW? (anomalies matrix)

o x?() =% 4 X? (with X7 ith column of X?)

v
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Data assimilation Initial ensemble
Outline

© Data assimilation

@ Initial ensemble
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Initial ensemble: Cooking recipe (1)

@ Generate an ensemble of a = log(/3) following a Gaussian law
N(a?,B,) with

Balj = 02 exp ((x—Lx>>

Generate an ensemble of By, following a Gaussian law ./\/'(Bsboc, By)
Generate an ensemble of S following a Gaussian law A/ (S°%, o2l)

Compute H = S — Bsoc and correct to avoid negative ice thicknesses.

e 6 o6 o

For each member, run the model 1 year in order to obtain more
physically balanced ice sheets.

Rescale the produced ensemble so that its mean remains equal to the
background.

Warning: we use observations to produce initial ensemble!
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Initial ensemble: Cooking recipe (2)

B, = XCX

with:
@ X square root of diagonal matrix of variances
@ C correlation matrix
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Data assimilation Initial ensemble

Initial ensemble: Cooking recipe (3)
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Data assimilation Initial ensemble

Initial ensemble

Initial ice sheet ensemble (Ne = 50)
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Outline

© Data assimilation

@ Results
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Data assimilation Results

ETKF (Nens = 1000)

ETKF result for ice sheet (ensemble size = 1000)
T T T

altitude (in m)

reference + background x final analysis

observed surface

-1500

N N N N N
0 200 400 600 800 1000 1200
x-axis (in km)

DARC Seminar (Readi

October 30, 2013



ETKF (Nens = 1000)

Standard deviation for bedrock topography (ensemble size = 1000)
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ETKF (Nens = 1000)

ETKF result for § (ensemble size = 1000)
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Data assimilation Results

ETKF (Nens = 1000)

ETKF result for sliding velocity (ensemble size = 1000)
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ETKF (Nens = 1000)

Standard deviation for sliding velocity (ensemble size = 1000)
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LETKF (Nens = 30, 50, 100)

LETKEF results for ice sheet (ensemble size = 100, 50, 30)
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LETKF (Nens = 30, 50, 100)

Standard deviation for bedrock topography (ensemble size = 100, 50, 30)
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LETKF (Neps = 30, 50, 100)

LETKEF results for sliding velocity (ensemble size = 100, 50, 30)
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LETKF (Nens = 30, 50, 100)

Standard deviation for sliding velocity (ensemble size = 100, 50, 30)

2500 T T T T T
background
final anal. (100 m.)
- - —final anal. (50 m)
| — - final anal. (30 m.)
2000 ; !

1500 | B

1000 -

standard deviation (in m/yr)

. —
600 800
x-axis (in km)

DARC Seminar (Reading) ETKF for ice sheet initialisati October 30, 2013 48 / 50



Ontgoing and future works

o Compare with variational approaches used in glaciology

@ Add more physics: ice shelves, criterion on basal temperature for
example.

@ Perform experiments on a real flow line

o Implement this method into a 2D ice sheet model.
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Thank you for your attention!

THIS 15 GREAT! Thesg
THINGS PORN'T HAVE A
CLUE ABouT us!

Polar bears finally migrate to Antarctica
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