
..

.. EMPIRE implementation manual

Philip A. Browne

University of Reading

February 17, 2015

Python 2.7 version.

Version 5.1



..

.. Contents

1 Install and test the minimal programs 2

2 Set up communicator 3

3 Initial send a receive calls 4

4 Timestepping send and receive calls 5

5 Testing 6

6 Common issues and solutions 7

7 The Coupling Communicator Explained 8

1



..

.. 1 Install and test the minimal programs

• Ensure that python and mpi4py is installed on the machine. This has been tested with Python
2.7.6 (default, Mar 22 2014, 22:59:56) [GCC 4.8.2] on linux2

• Download python empire.tar from:

http://www.met.reading.ac.uk/˜darc/empire/python_empire.tar.

• Uncompress the tar archive using: tar -xvf python empire.tar

• If the compilation works successfully, files model minimal.py, pf minimal.py and run.sh should
be created.

• To run the coupled system, and example launching command is in run.sh. If there is no queueing
system to be used, this can be executed with the command ./run.sh.

• If there is a queueing system, the second line in file run.sh should be submitted appropriately. See
the local system administrator for help if necessary.

• If the programs run successfully they should output files out.1.00 to out.1.22 containing the out-
put from the models and the particle filter code.

• Experiment with changing the number between -np and model minimal.py in ./run.sh to run
multiple ensemble members.

2

http://www.met.reading.ac.uk/~darc/empire/python_empire.tar


..

.. 2 Set up communicator

Before any information can be sent we have to define an MPI communicator that links the model to the
DA code.

• Find place in code to put initialisation statements. This should be somewhere before the initial
model state is defined.

• In the program/subroutine corresponding to this place, firstly add the following lines of code:

def initialise_mpi():

global cpl_root,mdl_mpi_comm,cpl_mpi_comm,cpl_id,world_id,mdl_id,ptcl_id

mdl_num_proc = 4

da = np.array(0, dtype='i')

mpi_comm_world = MPI.COMM_WORLD

world_id = mpi_comm_world.Get_rank()

world_size = mpi_comm_world.Get_size()

models=mpi_comm_world.Split(da,world_id)

models_size= models.Get_size()

models_id = models.Get_rank()

mdlcolour = models_id / mdl_num_proc

mdl_mpi_comm = models.Split(mdlcolour,models_id)

mdl_id = mdl_mpi_comm.Get_rank()

if ( mdl_id == 0):

couple_colour = 9999

else:

couple_colour = MPI.UNDEFINED

cpl_mpi_comm = mpi_comm_world.Split(couple_colour,mdlcolour)

if ( mdl_id == 0):

nens = cpl_mpi_comm.Get_size()

ptcl_id = cpl_mpi_comm.Get_rank()

nda = world_size-models_size

nens = nens-nda

for da in range(1,nda+1):

if ( ptcl_id < np.float64((nens*(da)))/np.float64(nda)):

cpl_root = da-1 + nens

break

else:

cpl_root = -1

• The variables cpl root, mdl id and cpl mpi comm must be made available to the latter calls to
mpi send and mpi recv.

3



..

.. 3 Initial send a receive calls

• Find the place in the code where all the model prognostic variables are initialised.

• Count the total number of prognostic variables. Save this number into the variable state dim

• In this corresponding program/subroutine, declare the following:

state_vector = np.zeros(state_dim, dtype=np.float64)

• Now we have to pack all the prognostic variables into state vector. This step will need to be
documented and made available to the users of the data assimilation system, to understand the
meaning of the data they will receive. Normally this may be done by some form of loop so we will
illustrate this by an example:

if(mdl_id == 0):

for i in range(6032)

state_vector[i] = wind[i]

state_vector[i+6032] = height[i]

state_vector[i+2*6032] = density[i]

• Now immediately write the reverse of this process to unpack the variables.

if(mdl_id == 0):

for i in range(6032):

wind[i] = state_vector[i]

height[i] state_vector[i+6032]

density[i] = state_vector[i+2*6032]

• NOTE FOR PARALLEL PROGRAMS: The prognostic variables may be stored across different pro-
cessors and so a gather and scatter of this data onto processor mdl id = 0 may have to be inserted.

• Between the packing and unpacking of the variables, add the following code fragment:

if(mdl_id == 0):

cpl_mpi_comm.Send([state_vector,len(state_vector),MPI.DOUBLE_PRECISION], dest=cpl_root,tag=1)

cpl_mpi_comm.Recv([state_vector,len(state_vector),MPI.DOUBLE_PRECISION], source=cpl_root,tag=MPI.ANY_TAG,status=None)

4



..

.. 4 Timestepping send and receive calls

• Find the timestepping loop of the code.

• Go to the end of the timestepping loop, after the prognostic variables have been updated to their
new values.

• Copy and paste the entire section from the initial calls to MPI SEND and MPI RECV to the end of
the timestepping loop:

if(mdl_id == 0):

for i in range(6032)

state_vector[i] = wind[i]

state_vector[i+6032] = height[i]

state_vector[i+2*6032] = density[i]

if(mdl_id == 0):

cpl_mpi_comm.Send([state_vector,len(state_vector),MPI.DOUBLE_PRECISION], dest=cpl_root,tag=1)

cpl_mpi_comm.Recv([state_vector,len(state_vector),MPI.DOUBLE_PRECISION], source=cpl_root,tag=MPI.ANY_TAG,status=None)

if(mdl_id == 0):

for i in range(6032):

wind[i] = state_vector[i]

height[i] state_vector[i+6032]

density[i] = state_vector[i+2*6032]

5



..

.. 5 Testing

1. Edit the minimal code.

• Change the state dimension to equal the size of state vector in the model.

• Change the number of timesteps to equal the number of timesteps in the model.

2. Run the code with, say,

mpirun -np 1 : YOUR EXECUTABLE : -np 1 pf minimal

6



..

.. 6 Common issues and solutions

• The real kind of state vector was not accounted for.

EMPIRE will only accept a double as the entries of the state vector. Thus you have to ensure that
the variables which you put into it are doubles, and when you extract the variables from the vector
that you ensure their kind is the same as before.

• Not enough processors were requested to run the job.

Remember that the number of processors required will include both the requirements of themodel
(multiple models in an ensemble scenario) and the particle filter code.

For example in a HecTOR/Archer jobscript, mppnppn will have to be large enough to accomodate
the job.

7



..

.. 7 The Coupling Communicator Explained

Let us describe, line-by-line, what the coupling communicator does. Understanding it should be unnec-
essary for the user, but may be of interest.

• da = np.array(0, dtype='i')

This is a model, not a data assimilation process, so set da to zero.

• mpi_comm_world = MPI.COMM_WORLD

Store MPI COMM WORLD as a python variable.

• world_id = mpi_comm_world.Get_rank()

Get the global rank world id of this process.

• world_size = mpi_comm_world.Get_size()

Get the total number of processes launched, store it in world size.

• models=mpi_comm_world.Split(da,world_id)

Separate the global communicator into models and data assimilation processes. All the model
processes now share the models communicator.

• models_size= models.Get_size()

Compute how many model processes there are, store this as models size.

• models_id = models.Get_rank()

Compute the process rank amongst the models, and store as models id.

• mdlcolour = models_id/mdl_num_proc

Block the instances of the model into colours. The first mdl num proc instances are given mdl-
colour = 0, the second mdl num proc instances are given mdlcolour = 1 and so on. Note this is
equivalent to fortran integer division.

• mdl_mpi_comm = models.Split(mdlcolour,models_id)

Split the global communicator into a communicator for each grouping of the model instances.
Those with the same colour are part of the same communicator and this is given in the variable
mdl mpi comm.

• mdl_id = mdl_mpi_comm.Get_rank()

Get the processor identifier within the model communicator. This is stored in the variable mdl id.

• if ( mdl_id == 0):

couple_colour = 9999

For each ensemble member, we set a coupling colour 9999 only on the master processor. The
master processor is given by mdl id = 0.

8



• else:

couple_colour = MPI.UNDEFINED

Those processors which are not the master processor of each ensemble member are not given the
same coupling colour.

• cpl_mpi_comm = mpi_comm_world.Split(couple_colour,mdlcolour)

This split groups the master processor of each ensemble member with each of the instances of the
ensemble data assimilation code. It creates the cpl mpi comm communicator.

• if ( mdl_id == 0):

This section is only done by the master processor of each ensemble member.

• nens = cpl_mpi_comm.Get_size()

This finds the total number of processes in the communicator cpl mpi comm. It is temporarily
stored in the variable nens.

• ptcl_id = cpl_mpi_comm.Get_rank()

We find the ensemble member number and store it in the variable ptcl id.

• nda = world_size-models_size

Compute the number of data assimilation processes as they are those processes which are not on
the model communicator.

• nens = nens - nda

Here we use the previously stored variable nens, that contained the combined number of ensemble
members and data assimilation processes, to calculate the number of ensemble members.

• for da in range(1,nda+1):

if ( ptcl_id < np.float64((nens*(da)))/np.float64(nda)):

cpl_root = da-1 + nens

break

else:

cpl_root = -1

This selects the appropriate identifier of the data assimilation code on the communicator cpl mpi comm
which the ensemble member will link to.

9


	Install and test the minimal programs
	Set up communicator
	Initial send a receive calls
	Timestepping send and receive calls
	Testing
	Common issues and solutions
	The Coupling Communicator Explained

