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Long Waves and Cyclone Waves

By E. T. EADY, Imperial Collegc of Science, London

(Manuscript received 28 Febr. 1949)

Abstract

By obtaining complete solutions, satisfying all the relevant simultancous differential
equations and boundary conditions, representing small disturbances of simple states of
stcady baroclinic large-scale atmospheric motion it is shown that these simple states of
motion are almost invariably unstable. An arbitrary disturbance (corresponding to some
inhomogencity of an actual system) may be regarded as analysed into “components™ of
a certain simple type, some of which grow exponentially with time. In all the cases ex-
amined there exists one particular component which grows faster than any other. It is
shown how, by a process analogous to “natural sclection’, this component becomes
dominant in that almost any disturbance tends eventually to a definite size, structure and
growth-rate (and to a characteristic life-history after the disturbance has ceased to be
“small”), which depends only on the broad characteristics of the initial (unperturbed)
system. The characteristic disturbances (forms of breakdown) of certain types of initial
system (approximating to those observed in practice) are identified as the ideal forms of
the obscrved cyclone waves and long waves of middle and high latitudes. The implica-
tions regarding the ultimate limitations of weather forecasting are discussed.
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Baroclinic instability of semi-geostrophic fronts with uniform potential
vorticity. I: An analytic solution

By M. N. JUCKES*
University of Munich, Germany

(Received 5 August 1997, revised 16 April 1998)

SUMMARY
Baroclinic instability of uniform potential-vorticity flow between solid upper and lower boundaries is anal-
ysed. The instability is driven by meridional temperature gradients on the boundaries. The classic Eady model of
baroclinic instability uses just this system with the further idealization that the temperature gradients in the basic
state are uniform. Here, this last idealization will be replaced with a complementary one in which the basic-state
temperature gradients are taken to be concentrated in a front. The analysis then takes advantage of the fact that
the houndary temperature anomalies created by the growing baroclinic wave are localized at the front. The de-
pendence of the growth rates and phase structure on wave number are remarkably similar to those of the Eady
model. The wave number of maximum instability and the short-wave cut-off differ from those of the Eady model
by less than 2% and 10% respectively. The solution is asymptotic in the limit of zero frontal width in geostrophic
coordinates. For a physical flow this limit can never be achieved, but comparison with direct numerical solutions
shows that the analytic solution is still accurate at physically relevant frontal widths. Part T develops the solution
based on an equation for the evolution of the displacement of the surface and upper fronts. Part II will look at the

three-dimensional structure of the disturbance in more detail.
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Some simple baroclinic instability solutions:
— Eady, Juckes

Some simple Rossby wave solutions:
— 2-d Euler, surface QG

An axisymmetric model of baroclinic instability



2-d Euler dynamics

(or 2-d incompressible flow, or barotropic vorticity dynamics, or ...)




Rossby waves |: Uniform gradient
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Rossby waves |: Uniform gradient
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Rossby waves |: Uniform gradient
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Rossby waves |: Uniform gradient
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Rossby waves Il: Front
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Rossby waves Il: Front
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Rossby waves Il: Front
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Rossby waves Ill: Rankine vortex
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Uniform
gradient waves

Frontal waves

Rankine vortex
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QG dynamics
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QGPV: Q=f-I—V21/)
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At horizontal boundaries: (a +u V) 6 =0



Two 2-d limits

No z variations No interior PV (Q=0)
(and theta constant on boundaries)
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Two 2-d limits

No z variations No interior PV (Q=0)
(and theta constant on boundaries)
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Surface QG dynamics




Surface QG waves |: Uniform gradient
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Surface QG waves |l: Front

y y
| Theta=Theta0/2

Theta X
Theta=-Theta0/2

Qg
Tfory::bﬂ
@ =

B
—Tfory-::[]




Surface QG waves |l: Front
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Surface QG waves |l: Front
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Surface QG waves lllI: Rankine vortex
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Surface QG waves lllI: Rankine vortex
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Frontal waves

Rankine vortex
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The axisymmetric model
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z=d

The axisymmetric model
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The axisymmetric model
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The axisymmetric model
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The axisymmetric model

Symmetric case Realistic case
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The axisymmetric model
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The axisymmetric model — summary

Analytic model, similar to Eady/Juckes models
Growth rates of similar order of magnitude to Eady
Wide range of basic states can be explored
Questions:
Is there a simple ‘Eady growth rate’ diagnostic for this model?

What does the nonlinear wave breaking look like?
What is the zonal mean state after wave breaking?
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