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Surface QG dynamics

Surface QG (temperature) 2-d Euler (vorticity)
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Outline of talk

Introduction: PV basics
Quasi-geostrophic theory
The surface QG equations

Filament instability:

Baroclinic instability:
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Potential vorticity: a (very short) introduction

Vorticity is a measure of the local rotation rate of a fluid

It’s conserved in 2-d incompressible and frictionless flows: 
(2-d Euler equations)

This represents the conservation of angular momentum
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Potential vorticity: a (very short) introduction
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Two important properties:

(i) P (and q) is conserved by adiabatic and frictionless flows

(ii) It can be `inverted’ under suitable balance conditions

Vorticity is a measure of the local rotation rate of a fluid

It’s conserved in 2-d incompressible and frictionless flows:
(2-d Euler equations):

This represents the conservation of angular momentum
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Quasi-geostrophic theory

The simplest such balance

Based on the fact that the atmosphere is close to geostrophic and hydrostatic 
balance (at large scales)...thermal wind balance

Or, equivalently, that the Rossby number is small (Ro=U/fL<<1) and the Richardson 
number is large (Ri=N2H2/U2>>1/Ro)
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Quasi-geostrophic theory

Linearise the PV equation for small h variations (write h = h0+h’):
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rotation stratification
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Quasi-geostrophic theory

Linearise the PV equation for small h variations (write h = h0+h’):
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The continuously stratified (Boussinesq, constant N) version takes the form:
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Quasi-geostrophic theory

Linearise the PV equation for small h variations (write h = h0+h’):
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The continuously stratified (Boussinesq, constant N) version takes the form:

rotation stratification

Finally, hydrostatic balance gives:
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(typically N/f=100)
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Quasi-geostrophic theory

But what happens at the surface?
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Quasi-geostrophic theory

But what happens at the surface?

?
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Quasi-geostrophic theory

But what happens at the surface?

?
Use that q is conserved

The result is a two component system:

Interior potential vorticity:

Surface temperature:  
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The surface QG equations

Focus on the surface component by setting q=0

Then, at the surface,

With PV inversion given by 
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Key ingredients: 
A horizontal boundary
QG f-plane dynamics
Negligible interior PV



Outline

Introduction2/11/2010 Lunchtime Seminar

The surface QG equations

Key ingredients: 
A horizontal boundary
QG f-plane dynamics
Negligible interior PV

Other applications: 
Tropopause perturbations

Juckes (1994) showed that small scale tropopause 
perturbations can be approximated by surface QG
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The surface QG equations

Key ingredients: 
A horizontal boundary
QG dynamics
Negligible interior PV

Other applications: 
Tropopause perturbations

Juckes (1994) showed that small scale tropopause 
perturbations can be approximated by surface QG

Upper level ocean eddies
Lapeyre and Klein (2006) apply surface QG dynamics 
to upper level ocean dynamics
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How to model numerically?
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This is effectively a two-dimensional system
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Surface QG 2-d Euler



Outline

Introduction2/11/2010 Lunchtime Seminar

Surface QG dynamics

A turbulence simulation:
(animation)
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Surface QG dynamics

A turbulence simulation:
(animation)
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Surface QG dynamics

Surface QG (temperature) 2-d Euler (vorticity)

Both have: large coherent vortices plus complicated small scale structure

But: SQG vortices are less tightly bound and small scale structure is more ‘messy’
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Outline of talk

Introduction: PV basics
Quasi-geostrophic theory
The surface QG equations

Filament instability: Motivation
The effects of straining

Baroclinic instability:
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Filament instability

Motivation:

Both 2-d Euler vorticity filaments and surface QG temperature filaments are 
unstable in isolation (barotropic instability, the Rayleigh problem,...):

However...the presence of external flows often act to stabilise vorticity filaments 
(Dritschel et al 1991)

e.g., straining:
The filament remains coherent if the 
strain rate is large enough:

The question: What happens for 
surface QG dynamics? 

00.25s 
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Filament instability

Calculated by Juckes (1995).

Basic state:

Part I
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Filament instability

Calculated by Juckes (1995).

Basic state:

Perturbation:

where

Part I
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Filament instability

Calculated by Juckes (1995).

Basic state:

Perturbation:

where

Part I

Growth rates 
proportional to 

0
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q
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Filament instability

A numerical simulation:

Part I
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Filament instability

time

A numerical simulation:

Part I
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Filament instability
Now add a straining flow:

(s is the strain rate)

The filament will be stretched and squashed exponentially:

Which normally would act to stabilise any irregularities along the filament.

Part I
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time

Part I
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Filament instability

Part I

The equation for linear perturbations takes the same form:

Except that now the wavenumber and filament width are functions of time:

0e
stL L 

2

0e
st  



Outline

2/11/2010 Lunchtime Seminar

Filament instability

Part I

The equation for linear perturbations takes the same form:

Except that now the wavenumber and filament width are functions of time:

There are three competing effects:

1.    Kinematic decay:

2. Growth rate increase:

3. Wave-number decrease

0e
stL L 

2

0e
st  

2stA e

0 / L q
Stable until 

0 /cL L sq 
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Filament instability

Part I

The equation for linear perturbations takes the same form:

Except that now the wavenumber and filament width are functions of time:

There are three competing effects:

1.    Kinematic decay:

2. Growth rate increase:

3. Wave-number decrease
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There are three competing effects:

1.    Kinematic decay:

2. Growth rate increase:

3. Wave-number decrease

2stA e

0 / L q
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There are three competing effects:

1.    Kinematic decay:

2. Growth rate increase:

3. Wave-number decrease

2stA e

0 / L q
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There are three competing effects:

1.    Kinematic decay:

2. Growth rate increase:

3. Wave-number decrease

2stA e

0 / L q
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Filament instability

The conceptual picture:

In both models filaments are formed by the presence of straining, then...

In 2-d Euler dynamics: 
the straining keeps the filaments stable. Instability only occurs if 
the straining stops or the filament moves away from it.

In surface QG: 
the straining keeps the filaments stable, but only for a short time. 
Once they reach a critical width perturbation growth dominates.
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Outline of talk

Introduction: PV basics
Quasi-geostrophic theory
The surface QG equations

Filament instability: Motivation
The effects of straining

Baroclinic instability: Uniform PV models
A new model



2/11/2010 Lunchtime Seminar

Baroclinic instability

Motivation:

Part II
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Baroclinic instability

Motivation:

Part II
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Baroclinic instability

Motivation:

Part II
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Baroclinic instability:

Uniform PV models

Example Eady (1949) Juckes (1998)

Part II
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Baroclinic instability:

Uniform PV models

Example Eady (1949) Juckes (1998)
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Part II
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Baroclinic instability:

Uniform PV models

Yet another model:

Interesting features:

No longer restricted to tropopause-surface symmetry

Nonlinear evolution may be more realistic due to circular geometry
- is the direction of wavebreaking simply related to the basic state?

Part II



2/11/2010 Lunchtime Seminar

Baroclinic instability:

Uniform PV models

Linear dynamics:

First consider a single temperature 
patch on the tropopause

radius
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Part II
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Baroclinic instability:

Uniform PV models

Linear dynamics:

Next add an opposing patch at the 
surface

Part II
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Baroclinic instability:

Uniform PV models

Linear dynamics:

A non-symmetric example

Part II
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Baroclinic instability:

Uniform PV models

Nonlinear simulations:

Part II
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Baroclinic instability:

Uniform PV models

Nonlinear simulations:

Part II
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Conclusions

•Small scale stratospheric intrusions can be modelled as filaments in the surface QG 
equations

•Filaments in the surface QG model behave very differently to those of the more 
familiar 2-d Euler system, because...

•...straining does not stabilise them

•In fact, straining just constrains when the instability occurs.

•Uniform PV quasi-geostrophic models provide analytically tractable examples of 
baroclinic instability

•We’ve formulated a new circular model as an extension to the `polar-front’ model 
of Juckes (1998)

•The linear theory gives realistic growth rates for atmospheric parameter values, 
and the nonlinear evolutions may be insightful for understanding wavebreaking


