
Benjamin Harvey   |   Maarten H. P. Ambaum

3. Model Setup

The setup we study here is sketched in Figure 1. It takes the form of two vertically aligned 

boundary temperature anomalies, one at the surface and one at the tropopause  level. 

Each is a circular patch of uniform temperature.

The major differences with the Eady model are (1) that the temperature gradients on the 

boundaries are concentrated into sharp fronts, and (2) that circular geometry is used 

which allows a much wider range of basic states to be studied, as well as potentially 

exhibiting more realistic wave breaking behaviours.

Analytic progress is possible because of the models simplicity: the dynamics are 

governed entirely by the positions of the two patch edges.

There are three parameters in this model: the ratio of the upper and lower temperature 

values,                         , the ratio of the patch radii                      and d the depth of the 

troposphere.

Cross sections of the basic state zonal wind and potential temperature are shown in 

Figure 2 for two example sets of parameter values. Note that the regions of strong 

meridional temperature gradient, and the jets, are localised around the fronts, a feature 

absent from both the Eady and Charney models.
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2. Mathematical Background

The two archetypal analytic models of baroclinic instability are the Eady and Charney 

models. The model  presented here is most similar to the Eady model in that it uses 

quasi-geostrophic dynamics with a uniform distribution of potential vorticity. This 

focuses attention on the important roll of the temperature distributions on the lower 

boundary and the tropopause. As in the Eady model, both of these are taken to be flat 

horizontal boundaries.

The mathematical formulation is based on the conservation of the quasi-geostrophic 

potential vorticity anomaly throughout the atmosphere (Vallis, 2006):

where       is the streamfunction, f the (constant) Coriolis parameter and N the Brunt-

Vaisala buoyancy frequency. Together with the conservation of potential temperature on 

the upper and lower boundaries:

these equations uniquely specify the streamfunction.

An axisymmetric analytic model of baroclinic 

instability

1. Introduction

Baroclinic instability is the dominant mechanism by which synoptic-scale cyclones 

and anti-cyclones are generated in the mid-latitudes.  Here we present a new simple 

mathematical model of the instability process which we are using to better 

understand the nonlinear behaviour of breaking baroclinic waves.

3. Linear analysis

For small amplitude disturbances of the patch edges, the evolution of the system is given 

by a simple 2x2 matrix equation:

where                         are the positions of the patch edges for a wave number n disturbance. 

The functions  Pi represent the wave propagation of each edge wave on its own 

temperature front and Iij the interaction between the two patches. 

These functions can be calculated quasi-analytically in terms of Bessel functions. There is 

some subtlety in deriving the propagation coefficients since sharp QG temperature 

fronts are associated with velocity singularities (see Figure 2). However, the problem is 

solved in Harvey & Ambaum (2010). The result is shown in Figure 3 as a function of the 

wave number n. There are interesting comparisons between these phase speeds and 

both those of the Rankine vortex in 2-d Euler dynamics and also the corresponding 

surface QG result (Harvey & Ambaum 2010).

There are normal mode solutions to (3), with the normal mode growth rates given by the 

matrix determinant:                                . Figure 4 shows the normal mode growth rates for 

the two example sets of parameter values used in Figure 2.

To illuminate some features of the instability further, Figure 5 shows the regions of 

parameter space with unstable normal modes.
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Figure 1: The model setup. The
atmosphere is bounded by rigid
horizontal boundaries at heights
z=0 and d. Each boundary contains
a circular patch of anomalous
temperature.

Figure 2: Example cross
sections of the basic state zonal
wind (orange) and potential
temperature (yellow) profiles
for two example sets of
parameter values.
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5. Conclusions

We have analysed the linear stability properties of a new 

model for baroclinic instability.

We plan to numerically integrate the full nonlinear 

equations in order to study the wave breaking behaviour 

of this setup.

The figure shows an example integration using parameter 

values from the second example case above.

This case appears to break anti-cyclonically, but others 

behaviours are seen as the parameters are varied.

Figure 3: The phase and group speeds of
disturbances on a single patch. The phase
speeds enter (3) as the Pi terms. The
dashed and dotted lines show the
corresponding results for the 2-d Euler
Rankine vortex and the pure surface QG
cases respectively.
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Figure 4: The normal mode growth rates
(solid) and phase speeds (dashed) for
the two example cases of Figure 2.

Figure 5: The boundaries of stability in
parameter space. The two example cases
are indicated by the letters.
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