
Instability of surface temperature filaments in strain and shear

B. J. Harvey and M. H. P. Ambaum

Department of Meteorology, University of Reading, UK

Abstract

The effects of uniform straining and shearing on the stability of a surface quasi-

geostrophic temperature filament are investigated. Straining is shown to stabilise per-

turbations on wide filaments but only for the finite time until the filament thins to a

critical width, after which some perturbations can grow. No filament can be stabilised

in practice since there are perturbations which can grow large for any strain rate. The

optimally growing perturbations, defined as solutions which reach a certain threshold am-

plitude first, are found numerically for a wide range of parameter values. The radii of the

vortices formed through non-linear roll-up are found to be proportional to θ/s, where θ is

the temperature anomaly of the filament and s the strain rate, and not dependent on the

initial size of the filament.

Shearing is shown to reduce the normal mode growth rates but cannot stabilise them

completely when there are temperature discontinuities in the basic state; smooth filaments

can be stabilised completely by shearing and a simple scaling argument provides the shear

rate required.

1 Introduction

The surface quasi-geostrophic (SQG) equations provide an accurate model for the motion of

rapidly rotating stratified fluids near horizontal boundaries. In the atmospheric context there

1



is a body of work applying the SQG equations to the dynamics of surface temperature anoma-

lies (Müller et al. (1989), Schär & Davies (1990), Ambaum & Athanasiadis (2007)) and also

to the dynamics of tropopause height anomalies (Juckes (1994), Juckes (1995), Juckes (1999),

Tulloch & Smith (2006)). More recently their application to upper-level ocean dynamics has

also been demonstrated (Lapeyre & Klein (2006)).

The model consists of 2-dimensional advection of the boundary temperature field under

the assumption of uniform potential vorticity in the fluid interior. The surface streamfunction

is related to the surface temperature field by a Green’s function which decays like 1/r, see (4).

This induces a more localised dynamics compared to the more familiar barotropic vorticity

equation which has a Green’s function with a − log r decay. The 1/r Green’s function is

the same as the full 3-dimensional quasi-geostrophic flow and the SQG system does exhibit

flavours of 3-dimensional flows despite its 2-dimensional form (Constantin et al. (1994)).

Here we investigate the striking ‘curdling’ at small scales which is apparent in many SQG

turbulence simulations (Pierrehumbert et al. (1994), Held et al. (1995), Juckes (1995)). This

curdling is an explanation for the instability of filamentary stratospheric intrusions as well

as surface temperature features. The production and stretching of filamentary structures is

a ubiquitous feature of 2-dimensional fluid flows, providing a mechanism for the transport of

enstrophy to small scales. In the SQG case, however, the filaments appear prone to instability

leading to their break up and the subsequent formation of smaller scale vortices. These vortices

in turn shed smaller filaments themselves and the process repeats to ever smaller scales. The

smaller scale SQG filaments have larger perturbation growth rates, see below, and therefore

this process can potentially accelerate, resulting in intense activity at small scales on very

short time scales, hence the curdling.

The stability of an isolated SQG temperature filament was studied in detail by Juckes

(1995). In this paper we investigate the filament instability under typical turbulence condi-
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tions by considering separately the effects of external straining and shearing flows. Such flows

provide a first order approximation to the general tendency of the large scale components of

flows to form, stretch, thin and shear smaller scale filamentary structures.

That external flows can strongly affect fluid dynamic instabilities has long been under-

stood. Dritschel (1989) and Dritschel et al. (1991) study the most basic cases of a barotropic

vorticity filament in shear and strain respectively, and we follow a similar methodology in

this study. They find that suitably strong shear or strain can completely stabilise vorticity

filaments. Other studies have subsequently applied these ideas to the stability of frontal po-

tential vorticity anomalies in the atmosphere (e.g. Dacre & Gray (2006), Bishop & Thorpe

(1994)).

Because the SQG system is less familiar than the barotropic system we briefly outline

its structure and the notation we employ in Section 2. We then review the basic instability

mechanism of SQG filaments in the absence of external flow fields in Section 3. The analysis

of the straining case is presented in Sections 4-6. In Section 4 we consider the instantaneous

growth rates of perturbations analytically, in Section 5 we present numerical integrations

of the initial value problem to study the evolution of perturbations in detail. Finally in

Section 6 we consider an alternative approach to the initial value problem whereby we suppose

perturbations are continually applied to the filament since, as we show, the first perturbation

to be applied is not always the first to become large. The analysis of the shear case is more

straightforward and is presented in Section 7. We present some concluding remarks in Section

8.
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2 Governing equations

With the atmospheric surface temperature anomaly application in mind for the choice of

notation, we write the SQG system as follows.

Dθ

Dt
= 0 at z = 0 (1)

and ∇2ψ = 0 in z > 0, (2)

where θ is proportional to the potential temperature anomaly and ψ is the geostrophic stream-

function, D/Dt = ∂/∂t + u∂/∂x + v∂/∂y is the geostrophic Lagrangian derivative and (2)

represents the condition of zero interior PV. The geostrophic variables are given by

(u, v, θ) = (−ψy, ψx, ψz) (3)

and u, v and θ are all assumed to decay at large z. Given a surface θ distribution, (2)-(3)

then determine all other fields uniquely. For the atmospheric lower boundary application, θ

is the potential temperature anomaly scaled by g/θ00N and therefore has the dimension of

a velocity field, z is the vertical coordinate scaled with the Prandtl ratio, N/f , and θ00 is a

constant background reference temperature.

In the following we suppress the z-dependence of all variables and consider only their

surface values. The inversion of a surface temperature distribution θ(x), where x = (x, y),

then takes the form

(u, v)(x) = − 1

2π

(

− ∂

∂y
,
∂

∂x

)
∫ ∫

θ(x′)

|x− x′| d
2
x
′, (4)

which can be derived by considering the Fourier transform of the full 3-dimensional system.

For a 1-dimensional surface temperature profile θ = θ(y) this inversion reduces to a Hilbert

transform,

u(y) = − 1

π

∫

∞

−∞

θ(y′)

y − y′
dy′, v = 0. (5)
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Figure 1: Sketches of the basic state temperature and velocity fields (A), the strain flow of

Equation (20) (B) and the shear flow of Section 7 (C).

3 Analysis of an isolated filament

Here we briefly outline the stability analysis of an SQG filament in a quiescent background

flow. Many of the results were derived by Juckes (1995); the purpose of this review is to

introduce notation and define several important parameters used in later sections.

The problem considered is that of a filament of anomalous surface temperature with a

‘top-hat’ profile as illustrated in Figure 1A,

θ = Θ(y) ≡















θ0 for |y| < L/2

0 for |y| > L/2.

(6)

The velocity field induced by this temperature anomaly is also sketched in the figure. By (5),

it is proportional to the Hilbert transform of the temperature field,

u = U(y) =
θ0
π

log

∣

∣

∣

∣

y − L/2

y + L/2

∣

∣

∣

∣

, v = 0. (7)

The logarithmic singularities in the velocity field along the edges of the filament are a

generic feature of temperature discontinuities under SQG inversion (see Held et al. (1995)).

Juckes (1995) shows that despite this singularity the stability characteristics of a slightly

smoothed version of this filament are regular in the limit of sharp edges, at least for wave

numbers k ≪ δL−1 where δL is the width of the smoothing. We concentrate on the sharp

edge case in the following.
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In the sharp edge limit, the dynamics are governed entirely by the positions of the filament

edges. Suppose the edges are perturbed to the new positions y1(x, t) = (1/2+ ǫη1(x, t))L and

y2(x, t) = (−1/2 + ǫη2(x, t))L where ǫ is a small non-dimensional parameter. Conservation of

θ requires the filament edges to be material lines and so their evolution is given by

∂η1

∂t
= u(x, y1 + δ) ·

(

−∂η1

∂x
,

1

εL

)T

(8)

∂η2

∂t
= u(x, y2 + δ) ·

(

−∂η2

∂x
,

1

εL

)T

(9)

in the limit δ → 0. These equations represent the advection of the boundary by the velocity

field at the positions y = y1 + δ and y = y2 + δ respectively. At these locations the velocity

field is finite. In the limit δ → 0 the velocity components become large, but the inner products

remain finite: the large velocities always run parallel to the edges, leaving evolution of the

temperature field on finite time scales. For a more detailed discussion see Held et al. (1995),

Juckes (1995) and ?.

Juckes (1995) simplifies the system (8)-(9) by linearising the velocity field for small ǫ. The

dynamics of perturbations on each edge of the filament then consist of a contribution from

self-propagation and a contribution from interaction with the opposite edge, a process which

can be written succinctly in terms of Fourier components:

i
dη̂

dt
=









P (κ) I(κ)

−I(κ) −P (κ)









η̂ ≡ F η̂, (10)

where

κ = kL (11)

is the non-dimensional wavenumber and the Fourier components of the disturbance are defined

by (η1, η2) = η̂(t)eikx. The propagation (P ) and interaction (I) coefficients for the SQG
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filament problem are given by

P (κ) =
θ0
πL

κ(log κ+ γ − log 2) (12)

I(κ) =
θ0
πL

κK0(κ) (13)

where γ = 0.57721... is the Euler constant and K0 is the modified Bessel function of order

zero.

The general solution to (10) can be written as

η̂(t) = (I coshσt−F i sinhσt

σ
)η̂(0) (14)

where σ =
√

detF =
√
I2 − P 2 is the normal mode growth rate and I is the identity matrix.

Note from (12) and (13) that σ ∝ θ0/L in the SQG case and so perturbation growth rates are

inversely proportional to the filament width.

To measure the amplification of disturbances we use the r.m.s. wave slope norm which,

for a single Fourier mode, is given by

N (t) =
κ√
2
|η̂(t)| . (15)

This norm represents the size of the dominant nonlinear terms in the governing equations,

which typically consist of derivatives, and as such is a useful diagnostic for nonlinear de-

velopment (Dritschel et al. (1991)). The corresponding norm amplification factor is (taking

|η̂(0)| = 1)

A(t) ≡ N (t)

N (0)
= |η̂(t)| , (16)

the rate of change of which can be shown to be given by

dA
dt

= − 2

|η̂|I(κ)Im(η̂1η̂
∗

2), (17)

where Im(·) represents the imaginary component of the argument. This growth rate takes

a maximal value of I(κ) for waves of equal amplitude and a phase difference of π/2. This
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is therefore the disturbance configuration which undergoes maximum instantaneous growth

under this norm.

Two further quantities of interest are the value of the amplification factor (16) maximised

over all initial conditions of a given wavenumber,

A∗(t) ≡ max
η̂(0)

(A(t)), (18)

and the corresponding equivalent growth rate

σ∗eq = log(A∗(t))/t. (19)

Initially (when σt ≪ 1), σ∗eq ∼ I(κ) and in the long time limit (when σt ≫ 1), σ∗eq ∼ σ: the

equivalent growth rate collapses onto the normal mode growth rate in the long time limit.

This represents the possibility of transient growth at a rate larger than σ initially followed by

what is effectively normal mode growth. A full explanation of this process is given by Juckes

(1995) who plots σ∗eq, see Figure 2b of that study. We have also reproduced the plot in Figure

8 to allow easy comparison with our shearing case of Section 7.

4 External strain

We now investigate the effects of an external strain on this stability problem. We will demon-

strate that the straining is a stabilising process in the sense that all linear perturbations

eventually decay when there is an external strain present. However, we will also show that at

intermediate times perturbation growth to any specified amplitude can occur. In this sense,

the SQG filament cannot be stabilised by strain.

The external strain is written as

(us, vs) = s(x,−y), (20)

where s is the strain rate. The effect of this flow on the basic state of (6) is to thin the filament

exponentially in the y-direction so that at later times its width is given by L = L0e
−st,
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where L0 is the width of the filament at t = 0. Note that this increases the growth rate of

perturbations in the absence of straining which, from (12) and (13), is proportional to θ0/L.

The straining also has a direct effect on perturbations which are squashed in the y-direction

and stretched in the x-direction. The linear evolution is still given by (10) but now with time-

varying wave numbers, k = k0e
−st, which correspond to

κ = κ0e
−2st, (21)

and the wave slope norm of (16) becomes

A(t) = e−2st|η̂|. (22)

where η̂ are the Fourier components of both edge perturbations.

We thus see that the strain introduces two competing effects: there is a kinematic decay of

perturbations at the constant rate 2s, which is stabilising, whilst the thinning of the filament

causes an exponential increase in the instantaneous perturbation growth rates.

The analytic solution of (14) is not valid for non-zero strain rates so in Sections 5 and 6

we resort to numerical integration to analyse the problem in detail. As a first consideration

of the combined effects, however, consider the instantaneous growth rates of perturbations for

which there is a simple analytic result. From (17) and (22) it is clear that the rate of change

of A takes a maximum value of I(κ)−2s when there is straining, and therefore for each strain

rate there is a critical filament width above which no perturbations can grow,

L = Lc = max
κ

(

κK0(κ)

2π

)

θ0
s

≡ C
θ0
s
, (23)

where C ≈ 0.0742. This maximum value is achieved at non-dimensional wavenumber κ ≈

0.595. Note also that in the long time limit, whereby κ → 0, all perturbations will decay at

the kinematic rate of −2s.

The result of (23) suggests two regimes for the filament. Either L < Lc initially and there

are some perturbations which can grow, or else L > Lc initially and all perturbations initially
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decay. At the later time

t = tc =
1

s
log

(

sL0

Cθ0

)

, (24)

where L0 is the initial filament width, there will be some perturbations which can grow.

Therefore instantaneous perturbation growth can occur for any strain rate but only after the

filament has thinned to the critical width Lc.

Applying this argument to the initial value problem, which we study in detail in Section

5, we note that the amplitude of a perturbation applied to a wide filament, in the sense

that initially L > Lc, will have decayed kinematically by the time t = tc and will therefore

be smaller at this time than its initial value. Whether the perturbation can subsequently

become large will depend on whether the ensuing period of growth is sufficient to overcome

the initial decay. Note also that if the filament was perturbed with a further disturbance of

amplitude A = 1 at time t = tc then this new disturbance will possibly grow large before the

initial perturbation does because it will not have undergone the initial decay. We consider

this alternative to the initial value problem in Section 6.

Finally, we briefly note the similarity of the result (23) with that of Dritschel et al. (1991)

for the barotropic vorticity case who found that perturbation growth on vorticity filaments

is prevented if s > 0.25q0, where q0 is the filament vorticity. Likewise, the condition of (23)

means that perturbation growth in the SQG case is prevented if s > Cθ0/L. The difference

here is the factor L which, due to the exponential thinning of the filament, means that the

condition cannot be met indefinitely.

5 Initial value problem

We scale time with respect to the constant strain rate, s,

T = st, (25)
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Increasing κ
0

Increasing L
0

Figure 2: Evolution of log(A∗(T )) for various parameter values. Panel A: L0 = 0.8Lc and

κ0 = exp[−2,−1, 0, 1, 2, 3], as indicated. Panel B: L0 = 0.8Lc exp[−1.5,−1,−0.5, 0, 0.5, 1] and

κ0 = 1.0, as indicated. The dashed lines show the kinematic decay log(A∗(T )) = −2T .
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Figure 3: Panel A: Contours are Amax, the dotted line represents the boundary between

positive and negative initial growth given by I(κ) = 2s (see (23) and discussion) and the

symbols indicate the parameter values used in Figure 2. Panel B: Contours are Tmax. In both

plots the shading indicates regions of parameter which were not investigated.
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leaving only two non-dimensional parameters in the linear equations: the initial values of

L/Lc and κ = kL which we write as L0/Lc and κ0 = k0L0 respectively. In addition the

solution depends on the initial structure of the perturbation, η̂(0), but here we only consider

the maximum amplification, A∗(t), introduced in (18). Recall that the wavenumber of each

Fourier mode evolves according to (21) so that the full solution is

η(x, t) = η̂(t)exp(ik0e
−stx). (26)

The maximum amplification, A∗(t), can be calculated from numerical integrations using

the method of Dritschel et al. (1991) as follows. For given values of L0 and κ0 we numerically

integrate the system just twice with different initial conditions to obtain linearly independent

solutions µ̂(t) and ν̂(t). As the equations are linear, any solution η̂(t) can be obtained from

linear combinations of the form:

η̂(t) = αµ̂(t) + βν̂(t) (27)

where α and β are complex constants. A(t) then takes the form

A(t) = e−2st
(

|α|2|µ̂|2 + |β|2|ν̂|2 + 2Re(αβ∗µ̂ · ν̂∗)
)

1
2 (28)

which can be maximised over all α and β. Choosing µ̂ and ν̂ to satisfy µ̂(0) · ν̂∗(0) = 0

simplifies the expressions since then |η̂(0)| = 1 only requires |α|2 + |β|2 = 1 which, combined

with the phase invariance of the dynamics, means we can write

α = eiγ cos δ (29)

β = e−iγ sin δ (30)

and maximise (28) with respect to the real constants γ and δ. The maximum of A resulting

from this calculation is

A∗(t)=
e−2st

√
2

[

|µ̂|2+|ν̂|2+
{

(|ν̂|2−|µ̂|2)2+4|µ̂ · ν̂∗|2
}

1

2

]

1
2

. (31)
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To simplify the integration numerics we use alternative variables defined by (λ̂1, λ̂2) =

(η̂1 + η̂2, i(η̂1 − η̂2))/
√

2 as then all the coefficients in (10) are real. The natural choices of

λ̂(0) = (1, 0) and (0, 1) for the two linearly independent solutions correspond to

µ̂(0) =
1√
2
(1, 1) (32)

ν̂(0) =
i√
2
(−1, 1) (33)

and this is what we use.

The integration scheme used is a second order semi-implicit scheme. Accuracy is ensured

by systematically reducing the time step until convergence is achieved. Integrations have been

performed over a wide range of parameter space, (L0/Lc, κ0), and we now discuss the results.

As an initial illustration, Figure 2 shows the evolution of A∗ as a function of the scaled

time, T , for various parameter values. Panel A shows integrations with initial filament width

L0 = 0.8Lc and several initial wave numbers, κ0. Panel B conversely shows integrations with

equal initial wave numbers and a selection of L0/Lc values. In all simulations the long time

behaviour is that of decay at the kinematic rate. In some cases, however, there is intermediate

growth prior to this decay. We are interested in the magnitude of this growth and as such

we define Amax(L0/Lc, κ0) as the maximum value of A∗ achieved throughout the integration

period for each pair of parameter values, (L0/Lc, κ0).

Figure 3A shows Amax computed for a wide range of (L0/Lc, κ0) values and the corre-

sponding time at which the maxima occur, that is, Tmax such that A∗(Tmax) = Amax, is

shown in Figure 3B. Note the logarithmic scales in these plots. The parameter values of the

integrations in Figure 2 are also shown on the figure, as well as the border between positive

and negative initial growth predicted by (23).

There are two features of Figure 3 which we now discuss. The first, and most important,

is that for all values of the initial width, L0, there appear to be wave numbers which have

large Amax values and therefore may be unstable in the sense that nonlinear terms may
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dominate the dynamics and cause the filament to ‘roll-up’. The initial wave numbers, κ0, of

the perturbations which grow large increase with L0, as expected, a result of the following

combined effects: (i) the intermediate period of growth seen in Figure 2 occurs when κ = O(1)

and (ii) perturbation growth rates are larger on thinner filaments. Therefore the largest Amax

values are achieved by the largest κ0 experiments for which the filaments are very thin by the

time κ = O(1). Note that, despite this prediction of nonlinear instability at all strain rates,

an initial disturbance of any given wavenumber can be stabilised if a suitably strong strain is

applied.

The second feature of Figure 3 is the small wiggle of the contours in panel A in the region

of log κ0 = 0.5. This is near the border between positive and negative initial growth and it is

associated with the non-modal transient evolution of the isolated filament case (see Section

3). In that case small scale perturbations beyond the short wave cut-off of normal mode

growth exhibit oscillatory behaviour due to a lack of phase locking between the edge waves,

as can be seen in Figure 8 of this paper or Figure 2b of Juckes (1995). The wiggle in Figure

3A is a manifestation of this behaviour in the straining case, although here the effect is only

temporary because the short waves are stretched to a wavelength where phase locking can

occur and the subsequent perturbation growth then dominates.

We now consider an alternative diagnostic from the integrations: the smallest time at

which a certain threshold amplitude, Ath, is achieved. That is, the first Tth such that

A∗(Tth) = Ath. The motivation for this approach is that the amplification factor A is a

measure of the importance of nonlinear terms in the corresponding full nonlinear problem

and as such filament ‘roll-up’ may be expected to occur when this reaches some threshold

value. Without knowing this value, which will of course depend on the absolute size of the

initial perturbation, we calculate our results for a range of different threshold amplitudes.

Figure 4 shows Tth for the cases Ath = e1 = 2.72... and Ath = e4 = 54.6.... The plots show
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Figure 4: Contoured Tth values for threshold amplitudes Ath = e1 (panel A) and Ath = e4

(panel B). The dashed line indicates the minimum values, the dotted line is as in Figure 3.

Ath = exp(1)

Ath = exp(4)

Ath = exp(1)

Ath = exp(4)

Figure 5: Upper panel: Topt values for the threshold amplitudes Ath = e1 and Ath = e4.

Lower panel: aopt values for the same threshold amplitudes, see (34).
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that for each L0 there is an optimal initial wavenumber, κopt(L0;Ath), which achieves the

threshold amplitude first. This is marked on the plots by the dashed lines. Figure 5A shows

the corresponding optimal times, Topt(L0,Ath), which are the times at which the optimal

wavenumber perturbations reach the threshold amplitudes, as a function of L0. As expected,

the Ath = 4 case has larger Topt values than the Ath = 1 case. Also shown, in Figure 5B, is an

estimate of the radii of vortices formed from the instability, aopt(L0,Ath). This is defined such

that the area of one vortex is equal to the area of filament contained within one wavelength

of the optimally growing mode:

πa2
opt =

2π

κopt(L0)
L2

0. (34)

Both panels of Figure 5 show a regime change at a certain value of L0, which depends on

the choice of Ath. A comparison with Figure 4 suggests the interpretation that for small

L0 values perturbations can grow immediately whereas for large values none of the initially

growing perturbations reach Ath. Instead the first perturbation to do so is an initially decaying

one which must then overcome the kinematic decay. The result is that for filaments with large

L0 values the resultant vortices are significantly smaller than the initial filament width.

6 Continued perturbations

We next consider a different approach to the problem, that of a filament under continued

perturbations. By this we mean a filament which is perturbed at each instant in time during

the integration. We still assume that each perturbation evolves independently of the others

but expect that, since the quasi-stationary growth rate increases in time, a perturbation

applied at a time T = τ > 0 may grow and reach the threshold amplitude Ath before a

perturbation applied at time T = 0.

Note that the evolution of a perturbation applied at T = τ is equivalent to that of an

initial value problem with initial value of L given by L0e
−τ and therefore all the information we
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Ath = exp(1)

Ath = exp(4)

Ath = exp(1)

Ath = exp(4)

Figure 6: Upper panel: Tcp values for the threshold amplitudes Ath = e1 and Ath = e4 (solid

lines), dashed lines are Topt (see Figure 5). Lower panel: acp values for the same threshold

amplitudes, see (36).

Figure 7: Panel A: Critical widths vs threshold amplitude, see text. Panel B: Resultant vortex

radii vs threshold amplitude, see text.
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require to test this hypothesis is included in the initial value integrations already performed.

The motivation for the continued perturbation approach comes from the fact that the

wavenumber of the optimally growing modes is often very large. A filament with initial width

L = 3Lc has, for Ath = e4, an optimally growing mode of initial wavenumber κ0 ≈ e6 and this

appears to increase for stronger strain rates (see Figure 4). Clearly a consideration of numer-

ical resolution or other diffusive effects may make these modes unrealistic. Further, defining

the initial condition of a filament in a turbulent flow is not a well-defined procedure since

there is no time t = 0. Instead we suppose that the perturbations are generated throughout

the straining period by a noisy background velocity field.

To calculate whether a later perturbation can grow to a particular threshold amplitude

before an initial perturbation consider minimising the sum of waiting until the perturbation

release time τ and the subsequent optimal growth time for a filament of width L0e
−τ , over

all possible release times:

Tcp = min
τ<Topt(L0)

(

τ + Topt(L0e
−τ )

)

. (35)

Either the minimising τ is zero and it is the initial perturbation which is important or else the

minimising value is positive and it is a perturbation applied later which reaches the threshold

amplitude first.

Figure 6A shows Tcp as a function of L0 for both Ath = e1 and Ath = e4. For L0 larger

than some critical value Tcp is indeed smaller than Topt indicating that perturbations applied

later are the fastest growing. Figure 6B shows the corresponding vortex radii of the first

perturbations to reach the threshold amplitude, now defined by

πa2
cp =

2π

κopt(L0e−τ∗)
(L0e

−τ∗)2, (36)

where τ∗ represents the minimising τ value from (35). This is constant for precisely the same

L0 values and from this we infer the following: if a filament is initially wide, in a sense made
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precise below, and is continually perturbed then it has no ‘memory’ and will become unstable

only once it has thinned to a critical width which is independent of L0. The resultant vortices

will have radii proportional to θ0/s, again independent of how the filament was formed.

The relevant width in this statement refers to the transition in Figure 6 between the

regime whereby initial perturbations dominate and the regime whereby later perturbations

dominate, which depends on the value chosen for Ath. Figure 7A shows the critical width for

various Ath values, and the the resulting vortex radii are shown in Figure 7B.

Both the critical width and the vortex radii values reduce to zero for large Ath. For

Ath = e4 ≈ 54.6 the theory predicts instability to occur on a wide filament once the width

has reduced to L ≈ 0.3Lc and the resultant vortices to have radii a ≈ 0.3Lc.

7 External shear

In this section we consider the effects of an alternative external flow field, that of a shear

flow aligned with the filament as illustrated in Figure 1C. We find that such a flow can act to

stabilise smooth temperature filaments in a manner to be explained, but not the discontinuous

‘top-hat’ profile.

The shear flow is written

(uu, vr) = r(y, 0), (37)

where r is the rate of shear. The analysis of this case is much simpler that the strain case

since the basic state does not evolve in time. The perturbation evolution is still given by (10)

with a simple modification to the propagation coefficient,

P (κ) =
θ0
πL

κ(log κ+ γ − log 2) − κr

2
, (38)

which represents the modification of the local wave speed due to advection by the shear flow.

The analytic solution of (14) also holds with this modification and we plot, in Figure 8, the
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Figure 8: Equivalent growth rate values (see (19) for rates of shear r = 0.0 (left), r = −0.6θ0/L

(centre) and r = 0.3θ0/L (right). The times plotted are t = (0, 5, 10, 20)L/θ0 as indicated and

the bold line indicates the normal mode growth rate.

corresponding equivalent growth rates, see (19), for various shear values.

The figure shows qualitatively similar behaviour for all of the shear values. The σ∗eq values

are all initially equal to I(κ) and then collapse onto the normal mode values. An adverse

shear (panel C) shifts the unstable normal modes to higher wave numbers thus reducing the

wavelength of the most unstable perturbations. Likewise, a complementary shear (panel B)

shifts the unstable normal modes to smaller wave numbers and hence larger wavelengths.

The normal mode growth rate curve always lies below the I(κ) curve which is not affected by

the shear. In contrast to the barotropic vorticity case, there is no critical shear value which

stabilises the filament completely; there are always unstable modes, albeit with reduced growth

rates. This can be seen from (38): for any value of r there is a κ such that P (κ) = 0, hence

σ =
√
I2 − P 2 is real.

The inability of shear to prevent normal mode growth of the SQG ‘top-hat’ filament

is consistent with a consideration of the Fjortoft condition. Applied to this problem, the

condition assures stability provided the basic state velocity profile is anti-correlated with the

sign of the temperature gradients at each edge of the filament. Clearly (see Figure 1) the

20



velocity singularities at the filament edges prevent this from occuring for any finite shear

value.

If instead we consider the case of a filament with slightly smoothed edges, however, then

the singularities disappear. Suppose the filament edge is smoothed slightly over a width δL.

The peak in the basic state velocity field will then scale as

Upeak ∼ θ0
π

log(L/δL) (39)

and the Fjortoft condition will be met when

r ∼ 2θ0
πL

log(L/δL). (40)

Therefore we conclude that smooth temperature filaments can be stabilised by suitably strong

shearing, the strength of which is dependent on the filament profile.

8 Conclusions

Straining and shearing tend to inhibit the development of various fluid dynamical instabil-

ities. However, we have shown that straining is unable to stabilise temperature filaments

in the surface quasi-geostrophic system since it acts to thin filaments and thus increase the

instantaneous growth rates of perturbations.

Shearing is also unable to stabilise SQG ‘top-hat’ filaments and this is due to the velocity

singularities they induce.

For the straining case our numerical integrations show that the increase in perturbation

growth rate is large enough that following the evolution of a single perturbation is not the

fastest way to reach large amplitude. Instead, by considering many perturbations applied

continuously in time, we found that there is an optimal width for applying a perturbation

such that it grows to a given threshold amplitude first. According to this simple theory, the

size of the resultant vortices is independent of the previous history of the filament, instead

21



being proportional to θ0/s, with θ0 the temperature anomaly of the filament and s the strain

rate.

Diffusion will act to smooth the ‘top-hat’ filaments studied here possibly making the

method unsuitable. However, it can be shown analytically that the combined effects of strain-

ing and diffusion introduces a critical filament width

lν = (
ν

s
)1/2, (41)

where ν is the diffusion coefficient, above which diffusion plays a minor role. We therefore

expect filament instability to occur readily if Lc ≫ lν , or alternatively, if filament amplitudes

typically satisfy

θ0 ≫
√
νs

C
, (42)

where C ≈ 0.0742. For filaments satisfying these criteria, diffusion can be ignored.
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