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Abstract

The stability characteristics of the surface quasi-geostrophic shielded Rankine vortex

are found using a linearised contour dynamics model. We analyse both the normal modes

and non-modal evolution of the system and compare the results to two previous studies.

One is a numerical study of the instability of smooth surface quasi-geostrophic vortices

with which we find qualitative similarities and the other is a corresponding study for the

two-dimensional Euler system with which we highlight several notable differences.

1 Introduction

The surface quasi-geostrophic (SQG) model (Held et al., 1995) is an approximation to the

motion of a rapidly rotating stratified fluid near a horizontal boundary. It represents planar

advection of the boundary temperature field under the assumption of uniform interior po-

tential vorticity. This is in essence a two dimensional system whereby the streamfunction is

determined entirely by the boundary temperature field via a Green’s function proportional

to 1/r. Applications of the model include the evolution of tropopause undulations (Juckes

(1994), Juckes (1995), Muraki & Snyder (2007)) and near-surface oceanic vortices (Lapeyre
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& Klein, 2006). This type of dynamics has also been studied by Blumen (1978) under the

name of uniform potential vorticity flow.

Carton (2009) (hereafter C09) provides a numerical study of smooth shielded vortices in

the SQG model and compares the evolutions with those of unstable vortices under the more

familiar two-dimensional Euler dynamics. Here the complementary analytic study is presented

in which linear growth rates of perturbations are calculated for a simple class of shielded SQG

vortex, the shielded surface Rankine vortex. By this we mean the SQG analogue of the usual

shielded Rankine vortex of two-dimensional Euler dynamics: an inner circle of temperature

θ = θ0 surrounded by an outer annulus of temperature θ = θ1. In the following we use the

same notation and conventions as C09 which should also be referred to for a full description

of the model and its applications.

The shielded surface Rankine vortex provides the simplest analytically tractable example

of an unstable SQG vortex. Further, the corresponding two-dimensional Euler problem is well

studied (Flierl, 1988) so that this set-up provides a fruitful source of comparisons between the

two systems. The analytical treatment has become possible since Harvey & Ambaum (2011)

derived the dispersion relation for a single-step surface Rankine vortex, that is, a circular

patch of uniform temperature anomaly analogous to the Rankine vortex of two-dimensional

Euler dynamics. We review the methodology and the main results we require from this study

in Section 2 and then analyse the shielded problem in Section 3. A comparison is made with

the results of C09 in Section 4 and conclusions are provided in Section 5.
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2 Single-step surface Rankine vortex dispersion relation

The dispersion relation for linear perturbations to a single-step surface Rankine vortex, or

temperature ‘patch’, of the form

θ̄(r) =















θ0 r < a

0 r > a,

(1)

where a is the patch radius and θ0 the temperature anomaly of the vortex, is derived in Harvey

& Ambaum (2011). Here we review the methodology and the main results from that study.

It is shown there that the azimuthal velocity field corresponding to (1) can be written as

ū(r) = θ0E1(r/a) (2)

where we introduce the notation

En(r/a) ≡
∫

∞

0
Jn(κ)Jn(κr/a) dκ, (3)

with Jn the Bessel functions of the first kind. Figure 1(a) illustrates (1) and (2) graphically.

Note the logarithmic singularity in ū at r = a which we discuss below.

The dispersion relation is derived by perturbing the patch boundary to the new position

r = a(1 + Re(η(t)einϕ)), (4)

where ϕ is the azimuthal coordinate, and linearising the equation for material advection of

the boundary for small η. The linearised equation of motion is

dη

dt
= lim

r→a

(

− in

r
ūη +

1

a
v′e−inϕ

)

, (5)

where v′(r, ϕ, t), the linearised perturbation radial velocity field, is derived in Harvey & Am-

baum (2011) as

v′ =
in

r
aηθ0En(r/a)einϕ. (6)
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Note that the right hand side of (5) is the sum of the azimuthal advection of the perturbation

by the basic state (first term) and the radial advection of the basic state by the perturbation

(second term). Both of these terms are singular at r = a, but the combination (5) is regular.

The velocity singularity is a generic feature of temperature discontinuities under SQG inver-

sion. However, the singular component of the velocity is always aligned along the discontinuity

and the normal component remains finite. Therefore the evolution of the temperature field

remains relatively slow (Held et al., 1995). This alignment is apparent here through the can-

cellation of the singularities in (5), as discussed in detail by Juckes (1995). The justification

for using this basic state, despite the qualitative difference with the smooth profiles of C09,

comes from the fact that wave propagation on a slightly smoothed discontinuity is regular in

the sharp edge limit, as shown by Juckes (1995).

Putting η(t) ∝ e−iωnt and substituting for ū and v′ from (2) and (6) in (5) gives the

dispersion relation we seek:

ωn =
θ0n

a
lim
r→a

(E1(r/a) − En(r/a)), (7)

which is evaluated analytically in Harvey & Ambaum (2011) as

ωn =
θ0n

a

1

π

n
∑

j=2

(

1

j − 1/2

)

≡ θ0n

a
αn. (8)

We note that the two-dimensional Euler dispersion relation for waves on a vortex patch

can be obtained similarly. The less localised Green’s function, proportional to log r in that

case, introduces a factor k−1 into the integrand of (3) and the integrals can then be evaluated

as a/2n (Gradshteyn & Ryzhic, 2000) so (7) reduces to the standard result

ω2DE
n =

q0

2
(n − 1), (9)

where q0 is the vorticity value of the patch. An important difference between (9) and (8) is

the a in the prefactor: the phase speeds of perturbations, cp = ωa/n, on the SQG vortex are
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independent of the vortex radius. This is to be expected on dimensional grounds since θ has

the dimension of a velocity field whereas the vorticity, q, in the two-dimensional Euler system

has the dimension of a frequency.

3 Shielded surface Rankine vortex dispersion relation

We now use the method from Section 2 to find analytic expressions for the linear growth rates

of perturbations on a shielded surface Rankine vortex. We write the basic state as

θ̄(r) =































θ0 r < a

θ1 a < r < b

0 r > b,

(10)

with a < b the radii of the temperature jumps and θ0, θ1 the inner and outer temperature

anomalies respectively. Through linearity and (2) the corresponding basic state velocity field

is

ū(r) = (θ0 − θ1)E1(r/a) + θ1E1(r/b), (11)

an example of which is illustrated, along with the profile (10), in Figure 1(b).

To analyse the evolution of perturbations on this basic state we follow the procedure

from Section 2 except that here there are two boundaries which must be taken into account.

Consider perturbing each boundary independently to the new positions

r = r1(ϕ, t) ≡ a(1 + Re(η(t)einϕ)) and r = r2(ϕ, t) ≡ b(1 + Re(ν(t)einϕ)), (12)

and linearising the equation for material advection of each boundary, for small η and ν. The

result is a pair of equations analogous to (5),

dη

dt
= limr→a

(

− in
r ūη + 1

av′e−inϕ
)

(13)

dν

dt
= limr→b

(

− in
r ūν + 1

bv
′e−inϕ

)

, (14)

5



where ū(r) is given by (11) and the linearised perturbation radial velocity v′(r, ϕ, t) is likewise

a linear sum of contributions from each boundary of the form (6):

v′ =
in

r
(aη(θ0 − θ1)En(r/a) + bνθ1En(r/b))einϕ. (15)

We now substitute for ū and v′, from (11) and (15) into (13) and (14), and write the system

in matrix form for convenience. First we define the nondimensional parameters

λ = b/a and µ = θ1/θ0 (16)

to simplify notation, and note from (3) that En(1/λ) = λEn(λ). The system (13)-(14) can

then be written

i
d

dt









η

ν









=
θ0n

a









(1 − µ)αn + λµE1(λ) −λ2µEn(λ)

−(1 − µ)En(λ)

λ2

µαn

λ
+ (1−µ)E1(λ)

λ

















η

ν









(17)

≡ F









η

ν









, (18)

where αn is defined in (8). The matrix F contains all the information for the evolution of

linear perturbations. The diagonal elements represent the propagation of the disturbances

on each boundary whereas the off-diagonal elements represent the interaction between the

boundaries. Here we have chosen θ0/a as the dimensional frequency scale for consistency

with the study of Flierl (1988). That is, we imagine a central vortex of amplitude θ0 and

radius a and ask how the different ‘shields’ modify the vortex behaviour. An alternative,

which we discuss further below, is to focus on the filament-like nature of the instability. That

is, consider the outer annulus as a circular filament of width b − a, the instability of which is

modified by the circular geometry and the presence of the central vortex.

The normal mode frequencies of the system are given by the eigenvalues of F which take

the form

Ω±

n =
tr(F)

2
±

√

(

tr(F)

2

)2

− det(F). (19)
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There are therefore unstable normal modes when tr(F)2 < 4 det(F). This boundary of stability

in (λ, µ)-space is shown in Figure 2(a) for several wavenumbers. To interpret the figure we

note that the SQG analogue of the Rayleigh theorem requires a radial temperature profile to

contain regions of opposing gradient for growing normal modes to exist (see C09). These are

only present in (10) if µ > 1 or µ < 0 and the regions of normal mode growth in Figure 2(a)

are indeed contained within these regions.

Figure 2(b) shows the corresponding two-dimensional Euler calculation for comparison,

following Figure 2 of Flierl (1988). That is, the stability boundaries for a shielded Rankine

vortex consisting of an inner circular patch with vorticity q0 and an outer annulus with

vorticity q1. The two plots have many qualitative similarities, the main difference being that

the n = 2 mode is stable for all q = q1/q0 > 0 in the two-dimensional Euler case whereas for

the SQG system there is a region of parameter space with µ > 0 where the n = 2 mode is

unstable. Another difference is that for the SQG case the boundaries of stability do not all

continue to large λ. For the two-dimensional Euler case the boundaries of stability all tend

towards q = (n− 1)/(n− 2) at large λ (see Flierl (1988)) whereas for the SQG system modes

n = 2 − 4 satisfy

µ ∼ 1 +

(

1

2αn
− 1

)

1

λ
for λ ≫ 1, (20)

but modes with n ≥ 5 (for which αn > 1/2) are stable for all µ at λ larger than a critical value

given by the solution to λ2
cE1(λc) = αn. This expression is found by noting that the stability

boundary is given by the implicit equation tr(F)2 = 4det(F). Expanding this equation for

λ ≫ 0 we find the expression (20), where we have also used the asymptotic result derived in

Harvey & Ambaum (2011) that En ∼ Cn/λn+1 with C1 = 1/2.

The normal modes of (19) are special perturbation configurations which preserve their

shape in time. In general, unstable solutions to equations of the form (18) undergo an initial

period of transient development during which they align towards the growing normal mode
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shape (see Farrell & Ioannou (1996) and Carton et al. (2010) for a full description of such non-

modal behaviour). The main result is that the transient development can exhibit a temporary

period of growth at rates larger (or smaller) than the normal mode growth rate, depending on

the initial configuration of the perturbation (i.e. η(0) and ν(0)). Similarly, stable solutions can

exhibit periodic cycles of transient growth and decay which, whilst not causing a long-term

net growth to perturbations, may temporarily increase the perturbation size.

A standard method of analysis is to consider the so-called singular mode amplitude, which

is the value of a given norm at any given time maximised over all initial conditions. The

singular mode amplitude can be calculated analytically in terms of the elements of F following

the methods of Farrell & Ioannou (1996). This has been done for the r.m.s. waveslope norm

and Figure 3 shows values of the corresponding singular mode equivalent growth rate,

σs(t) =
log(Ns(t)/N(0))

t
, (21)

where Ns(t)/N(0) is the singular mode amplitude scaled by the initial perturbation amplitude.

It can be shown that (Farrell & Ioannou, 1996) Ns has the following asymptotic limit for small

times (t ≪ |Ω±
n |−1)

Ns(t) ∼ N(0)(1 +
|F12 − F21|

2
t), (22)

where F12 and F21 are the off-diagonal elements of F, and for large times (t ≫ |Ω±
n |−1)

Ns(t) ∼ N(0)
|F12 − F21|
2Im(Ω+

n )
eIm(Ω+

n )t, (23)

if Im(Ω+
n ) > 0 and Ns(t) ∼ 0 otherwise. The figure shows these two limits graphically as

well two intermediate times. It is consistent with the notion that non-modal disturbances

of wavenumbers within the range of growing normal modes undergo a transient period of

growth potentially larger than the corresponding normal mode growth rate during which

they adjust towards the normal mode shape, followed by what is effectively normal mode

growth. Non-modal disturbances outside the range of the growing normal modes continually
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undulate around their initial configuration resulting in a σs which decays in time. The ridges,

particularly apparent in panel (c), are a result of this undulatory non-modal behaviour.

4 Completely shielded vortices

Returning now to analyse the normal modes in more detail, we focus on vortices with zero

net integrated temperature anomaly, that is,

(λ2 − 1)µ = −1, (24)

which is illustrated in Figure 2(a) by the solid line. This class of vortices is important because

it represents vortices with a more localised influence than not-completely-shielded cases. In

particular, the class of vortices studied by C09 are completely shielded.

Figure 4(a) shows the normal mode growth rates of perturbations for completely shielded

vortices as a function of λ. The SQG vortices display the familiar behaviour also observed

in the two-dimensional Euler case, through theory and experiment, that the wavenumber of

the fastest growing normal mode is dependent on the vortex profile, with progressively higher

modes being relevant for smaller λ, or larger µ. The increase in growth rate as λ → 1 is

consistent with a consideration of filament instability, as we show below. First we compare

the growth rates to those of the C09 study.

The family of vortices studied by C09 have temperature profiles of the form

θ = Θ(r) ≡ Θ0(α)
(

1 − α

2

( r

R

)α)

e−(r/R)α

(25)

where r is the radial coordinate, R and α are positive constants and Θ0(α) is a normalisation

factor such that the corresponding azimuthal velocity field ū(r) satisfies max(ū) = u0. These

profiles consist of a central temperature maximum surrounded by an annulus of negative

temperature anomaly, as illustrated in Figure 5. We approximate them as shielded surface

9



Rankine vortices by choosing suitable values for θ0, θ1 and the sizes of the inner and outer

regions.

There is freedom in choosing these parameters; we choose them to satisfy the following

four constraints:

r = a minimises dΘ/dr (26)

r = b maximises dΘ/dr (27)

∫

∞

0
θ̄(r)r dr = 0 (28)

∫ a

0
θ̄(r)r dr =

∫ a

0
Θ(r)r dr. (29)

That is, the locations of the jumps coincide with the points of steepest temperature gradient

and the two temperature values θ0 and θ1 are chosen so that both the total integrated tem-

perature anomaly is zero and the integrated temperature anomaly in the range r < a equals

that of the smooth profiles. The choice is of course not unique, but it suffices to provide a

qualitative comparison between the systems. Figure 5 illustrates this choice of parameters for

several values of α. The differences between the two growth rates is expected to be sensitive

in particular for small α where the smooth profiles differ most from the Rankine profiles.

The vortex parameters satisfying the constraints (26)-(29) are given by








a

b









= R





3α + 1

2α
∓

√

(

3α + 1

2α

)2

− (α + 2)(α − 1)

α2





1/α

, (30)

θ0 = Θ0(α)e−(a/R)α

, θ1 =
−θ0a

2

b2 − a2
(31)

where Θ0 and α are as in (25). Figure 4(b) shows the corresponding normal mode growth

rates, Im(Ωn), as a function of α. Note that the data plotted here are identical to those of

Figure 4(a) except for the choice of scalings.

Also shown in Figure 4(b) are the numerically obtained growth rates from C09 for the

corresponding smooth cases. There is a clear similarity between the two cases. The main
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difference is a shift towards higher α values in our figure since the first unstable mode appears

near α = 3 whereas there are unstable modes from α = 2 in C09. The magnitude of the

growth rates, however, are comparable between the two cases.

As mentioned above, the increase in growth rates for λ close to one, or equivalently large

α, is consistent with the nature of filament instability in SQG dynamics. For comparison, a

straight temperature filament of width L with a ‘top-hat’ profile, analogous to the Rayleigh

problem of two-dimensional Euler dynamics, is unstable with normal mode growth rates given

by

σfil =
θ

L
F(κ) (32)

where F is a function of the non-dimensional wavenumber κ = kL (Juckes (1995)). As such,

we define a scaling factor

S ≡
√

|θ1(θ0 − θ1)|
b − a

=
θ0

a

λ

(λ + 1)(λ − 1)2
(33)

which is the ratio of a temperature scale (the geometric mean of the two temperature jumps)

and the annulus width. Figure 6(a) shows that for unstable SQG vortices satisfying (24),

the maximum growth rate is always remarkably close to max(F)S ≈ 0.1292S. We expect a

similar result to hold for the two dimensional Euler system, except in that case there is no

length scale so the instability growth rates will just be proportional to the geometric mean of

the two vorticity jumps.

To highlight the link to the filament instability further, Figure 6(b) shows the dispersion

relation calculated for several vortices towards the limit of a large, but weak, central vortex

with an outer annulus of fixed width L, i.e. λ → 1 with b − a = L. The wavenumber n is

scaled to coincide with the wavenumber κ of the filament in this limit,

κequiv =
n

a
(b − a) = n(λ − 1), (34)

and the growth rates are again scaled by S of equation (33). The growth rates do indeed appear
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to coincide with those of the straight filament in the limit of λ → 1. The correction for larger

λ shifts the growth rate curve to slightly larger κequiv values on average but, consistent with

the discussion above, does not alter the maximum growth rate by very much. This shift in

the maximum growth rate seems to be purely a geometric effect of the curvature.

5 Discussion and Conclusions

The linear stability of the SQG shielded Rankine vortex has been investigated analytically.

The results show that the behaviour found numerically by Carton (2009) for a class of similar,

but smooth, temperature profiles is captured well by this simpler model. In addition, the study

provides a comparison to the well-studied two-dimensional Euler case.

The instability is shown to be related to filament instability in the relevant limit and is

remarkably similar even far from this limiting case. The interesting differences to the two-

dimensional Euler case are a result of the scaling between the advected quantity and the flow

field, which is apparent in the growth rate of the filament instability. Harvey & Ambaum

(2010) discuss this further in the context of a filament under strain and shear.

As a check of the theory, nonlinear simulations of the completely shielded vortices have

been run at high resolution with a pseudo-spectral code. This was achieved by (very) slightly

smoothing the vortex profile discontinuities. The experiments showed vortex instability on the

linearly most unstable mode within a shift towards larger λ of order 0.05. In a similar fashion

to the corresponding two-dimensional Euler case of Morel & Carton (1994), the numerical

experiments did not evidence nonlinear stabilisation into multipoles. Instead the outer annulus

breaks nonlinearly into smaller vortices which then pull the central vortex apart and disperse

as dipoles. However, as in the two-dimensional Euler case, stable multipoles can be achieved if

an annulus of zero temperature is introduced between the core vortex and the active periphery.

An interesting problem following on from this study is to investigate the corresponding
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baroclinic problem, that is, to consider two vertically separated SQG temperature patches

of opposite sign. This can be done either in an unbounded fluid, as an approximation to an

oceanic heton, or confined by horizontal boundaries, as a model of atmospheric baroclinic

instability on the hemispheric scale. This would put the model of Eady (1949) into a more

realistic setting. A similar framework could be applied in either case.
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Figure 1: Panel (a): Basic state temperature and velocity profiles for the one-step surface

Rankine vortex, (1) and (2). Panel (b): Example temperature and velocity profile for a

shielded surface Rankine vortex, (10), with parameter values b =
√

2a and θ1 = −θ0.

n=2n
=
3

n=2n
=
3

n
=
4

α=2

α=8

α=4

n=2

n
=
3

n=3

n
=
4

n
=
4

Figure 2: Panel (a): Stability boundary in (λ, µ)-space for wavenumbers n = 2− 7. The solid

line indicates vortices with zero integrated temperature, see (24), and the asterisks indicate

the positions of the profiles (30)-(31) for several α values. Panel (b): Stability boundary for

the two-dimensional Euler problem. The solid line indicates vortices with zero integrated

vorticity.
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Figure 3: Contoured values of σs for wavenumber n = 2 and t values as indicated. The small

and large t plots are given by the formulae (22) and (23) respectively. The contour interval is

0.05θ0/a with dark shading indicating high values and black shading indicating values greater

than θ0/a.
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n=2

n=3

n=4

n=2

n=3

n=4

Figure 4: Panel (a): Normal mode growth rates for completely shielded vortices as a function

of λ. Panel (b) Normal mode growth rates for the parameter values (30)–(31) as a function

of α. In both panels, wavenumbers 2–4 are indicated, the higher modes follow the pattern.

In panel (b) the broken lines show data from C09 (see text) where dotted is n = 2, dashed is

n = 3 and dot-dash is n = 4.

α=2

α=4

α=8

Figure 5: Some example temperature profiles. Smooth curves are the C09 profiles of (25), for

the α values shown, and the discontinuous profiles are the corresponding shielded Rankine

vortices given by (30)-(31).
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abcd

n=2n=3n=4

Figure 6: Panel (a): Normal mode growth rates scaled by S for vortices with zero integrated

temperature anomaly. Wavenumbers 2–4 are indicated, the higher modes follow the pattern.

The most unstable mode at each λ is emphasised by the heavy line and the dashed line

represents max(F)S = 0.1292...S (see text). Panel (b): Scaled normal mode growth rates

versus equivalent wavenumber κequiv for λ = 1.7, 1.5, 1.3 and 1.1, labeled a–d respectively.

The dashed line shows the dispersion relation for a straight temperature filament.
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