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Abstract

An analytical dispersion relation is derived for linear perturbations to a Rankine vortex

governed by surface quasi-geostrophic dynamics. Such a Rankine vortex is a circular region

of uniform anomalous surface temperature evolving under quasi-geostrophic dynamics

with uniform interior potential vorticity. The dispersion relation is analyzed in detail

and compared to the more familiar dispersion relation for a perturbed Rankine vortex

governed by the Euler equations. The results are successfully verified against numerical

simulations of the full equations. The dispersion relation is relevant to problems including

wave propagation on surface temperature fronts and the stability of vortices in quasi-

geostrophic turbulence.

1 Introduction

The simplest model for a two-dimensional fluid is the familiar two-dimensional Euler equations

and there are many studies of vortices in this system. This note is concerned with vortices

in an alternative 2-dimensional geophysical fluid model which has received renewed interest

recently, namely that of surface quasi-geostrophic (SQG) dynamics (see Held et al. (1995)).

This system is relevant to quasi-geostrophic dynamics near horizontal boundaries, and it
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has been applied to several different components of the atmosphere-ocean system including

near-surface temperature anomalies in the atmosphere (Müller et al. (1989), Schär & Davies

(1990), Ambaum & Athanasiadis (2007)), height perturbations of the tropopause (Juckes

(1994), Juckes (1995), Tulloch & Smith (2006)) and upper-level density anomalies in the

ocean (Lapeyre & Klein (2006)).

In the following we use the terminology of near-surface temperature anomalies in the

atmosphere. Vortices which form in this system correspond to regions of anomalous surface

temperature and are often called ‘surface enhanced’ vortices since the velocity field is strongest

near the surface and decays with height. We consider vortices composed of circular patches

of uniform anomalous temperature analogous to the Rankine vortex of the two-dimensional

Euler system. We derive a dispersion relation for linear perturbations to such patches and

present numerical tests of its validity.

The motivation is three-fold. Firstly, vortices commonly form in all of the physical situa-

tions to which SQG dynamics has been applied so an understanding of their behaviour is of

strong interest. Secondly, the dynamics of waves at surface temperture fronts is of interest.

The simplest case of an isolated 1-d temperature front is not a possible basic state under the

SQG inversion operator since in this case the Green’s function is not integrable. The circular

case provides a de-singularized alternative. Finally, a comprehensive comparison between the

2-d Euler and SQG systems is of inherent interest as several components of the atmosphere–

ocean system can arguably be modelled by either system or a system which lies between the

two.

We express the SQG system as follows:

Dθ

Dt
= 0 at z = 0 (1)

and ∇2ψ = 0 in z > 0, (2)

where θ is proportional to the potential temeprature anomaly and ψ is the streamfunction,
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D/Dt = ∂/∂t + u∂/∂x + v∂/∂y is the geostrophic Lagrangian derivative and (2) represents

the condition of zero interior PV. The geostrophic variables are given by

(u, v, θ) = (−ψy, ψx, ψz) (3)

and u, v and θ are all assumed to decay at large z. Given a surface θ distribution, the inversion

(2)-(3) then determines all other fields uniquely. In the following we surpress the z-dependence

of all variables and consider only their surface values. The inversion of a surface temperature

distribution θ(x), where x = (x, y), then has the Green’s function G(x) = −(2π|x|)−1 (Held

et al. (1995)). In spectral space the inversion of the surface fields takes the form ψ̂(k) =

−θ̂(k)/|k| where k = (k, l) is the horizontal wave vector, as can be shown by taking Fourier

transforms of the full three-dimensional fields.

For the atmospheric lower boundary application, θ is the potential temperature anomaly

scaled by g/θ00N , and therefore has the dimension of a velocity field, and z is the vertical

coordinate scaled with the Prandtl ratio, N/f . Here the ‘lower boundary’ is usually inter-

preted as the top of the planetary boundary layer, θ00 is a constant background reference

temperature, N is the buoyancy frequency and f the Coriolis parameter.

We write the surface temperature for the basic state Rankine vortex as

θ = Θ(r) ≡















θ0 r < a

0 r > a

(4)

where r is the radial coordinate. That such a patch is stable, and therefore supports neutral

perturbations, follows from the SQG analogue of Rayleigh’s stability theorem applied in radial

coordinates: exponential growth of linear perturbations is only possible if Θ′(r) takes positive

and negative values. This was shown by Carton (2009) for the case of smooth temperature

profiles. As with the Rayleigh theorem the extension to discontinuous profiles takes an intu-

itive form whereby temperature discontinuities are considered as regions of infinite gradient

with the appropriate sign.
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In section 2 we invert the basic state (4) analytically and derive a dispersion relation for

linear perturbations to the patch boundary. In section 3 we present numerical tests of the

dispersion relation before presenting a closing discussion and conclusions in section 4.

2 Dispersion relation

In the following we apply the SQG inversion in cylindrical coordinates. This is done by

expanding the temperature field in terms of Bessel functions of the first kind, that is, by using

Hankel transforms. The Bessel functions of the first kind, denoted Jn, form separable solutions

to the three-dimensional Laplace equation with cylindrical symmetry since they satisfy

∇2(Jn(kr)einϕ−kz) = 0, (5)

where (r, ϕ, z) are the usual cylindrical coordinates, k is a positive real number and n is an

integer label of the modes. Therefore, if the surface temperature field is written as

θ(r, ϕ) =

∞
∑

n=0

∫ ∞

0
θ̂(k, n)Jn(kr)einϕk dk, (6)

then the full three-dimensional temperature field is recovered by multiplying the integrand by

e−kz. From the fact that θ = ψz, the corresponding surface streamfunction has the form

ψ(r, ϕ) =

∞
∑

n=0

∫ ∞

0

(

−θ̂(k, n)

k

)

Jn(kr)einϕk dk. (7)

Comparing (6) and (7) we see that the inversion therefore has the familiar form of the spectral

space SQG inversion, ψ̂ = −θ̂/k. The inverse of the transform (6) is given by

θ̂(k, n) =
1

2π

∫ ∞

0

∫ 2π

0
θ(s, ϕ′)Jn(ks)e−inϕ′

s dϕ′ ds, (8)

as can be checked using the Bessel function orthogonality relation
∫∞
0 Jn(ks)Jn(kr)k dk =

δ(r − s)/r.
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We now use this method to invert the basic state profile (4). Due to the azimuthal

symmetry only the n = 0 term contributes in the expansion (6) so we write

Θ(r) =

∫ ∞

0
Θ̂(k)J0(kr)k dk, (9)

where the inverse is given by (8),

Θ̂(k) =

∫ ∞

0
Θ(s)J0(ks)s ds. (10)

Substituting for Θ from (4) and using the relation κJ0(κ) = (κJ1(κ))
′, this inverse evaluates

as

Θ̂(k) =
θ0a

k
J1(ka). (11)

The streamfunction induced by the basic state (4) is therefore given by

Ψ(r) = −θ0a

∫ ∞

0

J1(ka)

k2
J0(kr)k dk, (12)

and the corresponding basic state azimuthal velocity field, U(r) = ∂Ψ/∂r, is

U(r) = θ0

∫ ∞

0
J1(κ)J1(κr/a) dκ, (13)

where we have substituted κ = ka and used a further relation, J′0(κ) = −J1(κ). We now

introduce the notation

En(r/a) ≡

∫ ∞

0
Jn(κ)Jn(κr/a) dκ, (14)

so that the function E1 is proportional to the basic state azimuthal velocity field,

U(r) = θ0E1(r/a). (15)

The higher order En are used below to describe perturbation quantities. Figure 1A shows

plots of the functions En for various n.

We derive some asymptotic results for the function E1 in Appendix A. We show that the

singularity in U at r = a takes the form

U(r) ∼
θ0
π

(− log |1 − (r/a)2| + 4 log 2 − 2) (16)
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Figure 1: Panel A: Examples of the functions En. The solid line, E1, is proportional to the

basic state velocity profile, see (13). The cases n > 1 are proportional to the perturbation

streamfunction of a mode n disturbance, see (24). Panel B: The dashed line is the asymptotic

result for |r/a− 1| ≪ 1 of (16) and the dotted line is the asymptotic result for r ≫ a of (17).

Finally, the dot-dash line shows E1 − E3, see (26) and Appendix B, to illustrate that this

combination if finite in the limit r → a.
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and this is consistent with other studies which show that θ discontinuities induce velocity fields

with logarithmic singularities under SQG inversion (e.g. Held et al. (1995), Juckes (1995)).

Note that since this singular velocity is directed parallel to the temperature discontinuity it

does not induce a singular displacement of the discontinuity. Any perpendicular velocities

turn out to be finite — see below. We also show in Appendix A that for r ≫ a,

U(r) ∼
θ0a

2

2r2
(17)

which is consistent with the form of the SQG Green’s function, G(x) = −(2π|x|)−1. Both of

these asymptotic fits are plotted in figure 1B.

Next, we analyse the evolution of perturbations on the patch. Suppose the patch boundary

is moved to the new position

r = R(ϕ, t) ≡ a+ η(ϕ, t), (18)

with η ≪ a. We obtain the dispersion relation by considering the condition of material

advection of this boundary, which is expressed formally as

DR

Dt
≡
∂R

∂t
+
uϕ

R

∂R

∂ϕ
= ur (19)

where ur and uϕ are the radial and azimuthal components of the velocity field evaluated at

r = R. Both ur and uϕ are singular at the boundary but the combination in (19) represents

the velocity component perpendicular to the boundary, which Held et al. (1995) show to be

regular in general for temperature discontinuities. This can be checked directly for this case

by expressing ur and uϕ as contour integrals around the patch boundary (not shown). Juckes

(1995) further demonstrates that the linear version takes the form

∂η

∂t
= lim

r→a

(

u′r(r, ϕ) −
U(r)

a

∂η

∂ϕ

)

, (20)

where U(r) is the basic state velocity of (15) and u′r is a linear version of the radial velocity field

given by approximating the perturbation temperature distribution as a ring of δ-functions.
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That is, by inverting

θ(r, ϕ, t) = Θ(r) + θ0η(ϕ, t)δ(r − a). (21)

This linearisation can also be verified directly for this case via the contour integral represen-

tation (not shown).

We invert the perturbation part of (21) using the transform (6). For each azimuthal mode,

that is η = η̂(t)einϕ, the transform of the final term in (21) takes the form

η(ϕ, t)δ(r − a) = η̂(t)einϕ

∫ ∞

0
δ̂(k)Jn(kr)k dk (22)

where δ̂(k) is given by (8)

δ̂(k) =

∫ ∞

0
δ(s − a)Jn(ks)s ds = aJn(ka). (23)

The induced perturbation streamfunction is therefore

ψ(r, ϕ, t) = −θ0η̂(t)e
inϕ

∫ ∞

0
Jn(κ)Jn(κr/a) dκ = −θ0η̂(t)e

inϕEn(r/a), (24)

using the notation introduced in (14), and the corresponding perturbation radial velocity field,

u′r = −r−1∂ψ/∂ϕ, is given by

u′r(r, ϕ) =
in

r
θ0η̂(t)En(r/a)einϕ. (25)

Finally, we substitute for U and u′r in (20) and put η̂(t) ∝ e−iωnt to give

ωn =
θ0n

a
lim
r→a

(E1(r/a) − En(r/a)). (26)

This limit is finite, as illustrated in figure 1B for the case n = 3. In Appendix B we evaluate

the limit analytically for all n via a recursion relation and find that the dispersion relation

can be written as

ωn =
θ0n

a

2

π

n
∑

j=2

(

1

2j − 1

)

(27)

for n ≥ 2. The case n = 1 has, trivially, ω1 = 0. The limit in (26) can also be evaluated

for non-integer values of n, the result being continuous, but this case is not so analytically
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tractable or physically relevant. The dispersion relation (27) is the main result of this paper.

Below we examine its properties in detail and in section 3 we verify it numerically.

First, we note for comparison the corresponding result for linear perturbations to a

barotropic Rankine vortex, that is, a patch of uniform vorticity evolving under the two-

dimensional Euler equations. Taking Ω as the uniform patch vorticity the dispersion relation

is (see Saffman (1995))

ωn =
Ω

2
(n− 1). (28)

For both of these cases, (27) and (28), the corresponding phase and group speeds can be

calculated as

cp,n =
aωn

n
and cg,n+1/2 = a(ωn+1 − ωn) (29)

respectively. Note that the SQG phase speeds are independent of the patch radius whereas

the barotropic phase speeds are proportional to the patch radius, a result which is obvious

from dimensional grounds. Figure 2 shows plots of the phase and group speeds as functions

of wavenumber, n. We have non-dimensionalised the speeds by θ0 in the SQG case and aΩ in

the barotropic vorticity case.

To analyse the form of the SQG dispersion relation (27) we note that for large n (see

Gradshteyn & Ryzhik (2000)):

n
∑

j=2

(

1

2j − 1

)

=
1

2
(log n+ γ) + log 2 − 1 + O(n−2), (30)

where γ = 0.57721... is Euler’s constant. The dispersion relation (27) therefore satisfies

ωn =
θ0
πa
n(log n+ µ) + O(n−1), (31)

where µ = γ + 2(log 2 − 1) ≈ −0.03649. Truncating the O(n−2) terms gives a remarkably

accurate approximation with fractional errors of only 1.5% for n = 2 and 0.4% for n = 3.

The solid lines in figure 2A show this accuracy visually for the corresponding phase and group

speeds, group speed now defined as cg = a∂ωn/∂n, and table (1) shows the values numerically.
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Figure 2: Non-dimensional phase and group speeds (cp and cg respectively) for the SQG (panel

A) and two-dimensional Euler (panel B) systems. Symbols mark the exact analytic results

of (27) and (28). The lines in panel A show the corresponding quantities for the truncated

version of the dispersion relation (31).
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This truncated version of the dispersion relation has the same form as that of waves on straight

θ discontinuities which is (taken implicitly from Juckes (1995))

ω =
∆θ

π
k(log k + C) (32)

where k is the perturbation wavenumber, ∆θ the size of the θ discontinuity and C a constant

depending on the basic state velocity profile. It is worthy of note that the natural choice

of basic state for studying waves at θ discontinuities, a single 1-d temperature Heaviside

discontinuity, is not invertible under the SQG inversion operator. Any other 1-d profile

must contain at least one additional lengthscale and this will balance the dimension of k in

the logarithm. Any other profile will also, however, contain additional regions of non zero

temperature gradient which will influence the wave propagation at the discontinuity so (32)

is only a local approximation.

Finally we note that the dispersion relation for the SQG Rankine vortex (27) satisfies a

peculiar group speed–phase speed relation,

cg,n+1/2 =
1

2
(cp,n + cp,n+1) +

θ0
π
. (33)

This relation also holds for waves on a straight θ discontinuity (32) in that

∂ω

∂k
=
ω

k
+

∆θ

π
. (34)

This result is independent of any ambiguities associated with the basic state velocity profile

and appears to be a robust property of perturbations at θ discontinuities.

3 Numerical verification

Here we verify the dispersion relation of (27) via numerical simulation of temperature patches

in an SQG model.
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The numerical model runs on a [0, 1]× [0, 1] doubly periodic domain. The time integration

is performed with a semi-Lagrangian advection scheme consisting of a second order back-

trajectory calculation and bicubic spatial interpolation. The temporal resolution is varied

dynamically via a Lifschitz criterion such that |∇u|∆t < C where we choose C = 0.3 for the

tests presented here. The temperature field inversion is performed using Fourier transforms

and the spatial resolution used here is 512 gridpoints in each direction. We have repeated the

calculations at various resolutions and found we could verify the dispersion relation at these

resolutions as well.

We specify the initial condition in the model as a circular patch of anomalous θ with a

small amplitude, single wavenumber perturbation of its circumference and then sum, at each

time step, the squared differences between the current and the initial states,

∑

gridpoints

(θ(t) − θ(0))2 . (35)

We find the location of the first minimum in this time series using a quadratic fitting technique

and this corresponds to the time taken for the perturbation to rotate through an angle of

2π/n, which we write as t̃n (we use the tilde to denote numerically obtained values). The

corresponding nondimensionalised phase speed is then given by c̃p,n = 2πa/nt̃nθ0.

Table 1 shows that the best estimate of the phase speeds achieved from the numerics is

within a suitably defined error of the analytic result for a range of wavenumbers and this

therefore verifies the result. However, our model in not ideally designed for this simulation1

and several issues had to be carefully considered. We discuss these now.

Firstly, the sharp gradients in the basic state (4) cannot be accurately represented by any

grid-based numerical scheme. We choose instead to simulate a smooth version of the profile

1A pure contour dynamics method (e.g. Zabusky et al. (1979), Pullen (1992)) appears to be the most

natural choice, but this suffers from the logarithmic singularity in the along-front velocity field.

12



given by

Θ(r) =
1

2

{

1 − tanh

[

r − a(1 + ǫ cos(nϕ))

δ

]}

, (36)

where δ and ǫ are measures of the edge steepness and perturbation amplitude respectively.

This profile is well behaved numerically for a wide range of δ and by systematically varying δ

and then extrapolating to δ = 0 we can verify that the numerical results are consistent with

the analytic result of section 2. It is shown implicity in Juckes (1995) that the leading order

effect of a slight smoothing of width δ to a θ discontinuity is a reduction in the perturbation

phase speeds of the form

csmooth
p ∼ cp −Bδ2 log(δ/δ0) (37)

where B and δ0 are constants depending on the form of the smoothing and the wavenumber

of the perturbation. We use this form of the correction to extrapolate our numerical results

to the limit of δ → 0. We plot in figure 3A some numerically obtained phase speeds for the

profile (36) for various values of δ and n = 3. Also plotted is the fit (37) where cp, B and δ0

are the fitting parameters. The variation of numerical phase speed with smoothing width is

captured well by this fit.

We estimate an error in the extrapolated phase speed value based on resolution effects as

follows. We first calculate the number of gridpoints covered by the smoothed patch-edge region

along a cross section of the patch in each experiment. We then calculate the error estimate by

comparing the variation of this number accross the range of experiments performed with the

variation of the corresponding phase speeds obtained and assume that the finite numerical

resolution introduces an error in the effective smoothing width of ±1/2 gridsize. We refer to

this error estimate further below.

The other issue with the numerical scheme is the domain periodicity. This domain is

equivalent to performing the inversion on an unbounded domain with an infinite array of

identical patches centred at coordinates (i, j), with i and j integers. These patches have basic
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Figure 3: Panel A: Numerically obtained phase speeds versus δ for the case a = 0.15, ǫ =

0.00667 and n = 3; solid line is nonlinear fit of (37), dashed line is analytic result cp,3 and

squares show the values used for panel B. Panel B: Numerically obtained phase speeds versus

a for the case ǫ = 0.00667 and n = 3; diamonds are extrapolations to δ → 0 with associated

error bar (see text), solid line is nonlinear fit for periodicity (39) and dashed line is again cp,3.
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state circulations of the same sign as the central patch and therefore induce an opposite circu-

lation around the central vortex. This induced circulation reduces the phase speed compared

to the non-periodic case. The magnitude of this effect is a function of the patch radius so we

have repeated the above extrapolation process for a range of a values and present the results

in figure 3B, again for the case n = 3. Note that, since the fit (37) appears to be fairly robust,

we use fewer δ values here than in figure 3A to save computation time.

The fitted line in figure 3B is based on the following estimation of the combined influence

of the surrounding patches. The effect is not exactly isotropic around the circumference of the

patch, but tests have shown the anisotropic component to be small for reasonable a values.

Consider just three patches aligned linearly and spaced a distance L apart. The far-field

effect of the outer two patches on the central patch cancels at leading order, meaning that

the central patch does not move. Higher order terms act as a local adverse shearing. For

example, at the point where the central patch meets the line joining the three patches the

induced velocity parallel to the patch boundary is

U(L+ a) − U(r − a) ≈ −2θ0
a3L

(L2 − a2)2
. (38)

The approximation here is from the expansion (17). This correction takes the value 0.017θ0

for a = 0.2, L = 1 which accounts for much of the discrepancy in figure 3B for that case.

We estimate the total effect of all the patches as the sum of (38) over many of the nearest

neighbours multiplied by a constant to take account of the anisotropy. That is, we fit

cperiodic
p ∼ cp − Ca3

∑

i>0,j≥0

(

Li,j

(L2
i,j − a2)2

)

with Li,j =
√

i2 + j2 (39)

to the data in figure 3B by varying cp and C. In practice we avoid the slow convergence of the

sum by truncating it to i, j ≤ 3 and estimate the rest of the sum with an additional fitting

constant, D. The data is weighted in the fit according to the resolution error decribed above

at each radius value and the corresponding fitting error, σfit, of the best estimate phase speed
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is calculated and presented in table 1. The best estimate phase speed, given by the fitted

value of cp, is also shown. The analytic result of section 2 lies within σfit of the numerically

obtained value.

In summary, by extrapolating to the double limit of δ, a → 0 we have shown that,

to within a calculated resolution error, the analytic result of section 2 is correct for the

case n = 3. We have repeated this process for a range of different wavenumbers and the

results are also summarised in table 1. In each case the numerical result lies within 2σfit

of the analytic result. Noticably, all numerically obtained phase speeds are slower than the

analytic value and this suggests that other systematic errors are present which have not been

taken into acount. However, they appear to be not much larger than the resolution error.

The most likely candidates are the accuracy of the back-trajectory calculation in the semi-

Lagrangian scheme, the hyper-diffusion like effects associated with interpolation used in the

semi-Lagrangian scheme and nonlinear amplitude effects on the wave propagation.

4 Conclusions

We have derived and tested a dispersion relation for perturbations to the edge of a circular

patch of uniform temperature evolving under SQG dynamics. The dispersion relation is

similar to that of waves on a straight 1-d temperature discontinuity. However, unlike the 1-d

profile result, the patch solution is global.

The dispersion relation shows qualitative similarities to its two-dimensional Euler coun-

terpart and it is expected that further results from barotropic vortices carry over to the SQG

case. For instance, under two-dimensional Euler dynamics there are nonlinear perturbations

to uniform vorticity patches which rotate steadily, the so-called V-states (Deem & Zabusky

(1978), Verkley (1994), Ambaum & Verkley (1995)), and we expect there to be SQG ana-

logues. In fact, each mode of the linear dynamics in the barotropic case is associated with
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such a solution and we expect that the linear modes found here are likewise related to SQG

V-state solutions.

A further inference from our result concerns the behaviour of SQG vortices embedded

within a background flow. Such a flow will in general deform the vortex in a time dependent

manner. For the simple case of a pure straining, (u, v) = s(x,−y), there are illuminating

steady state solutions in the small strain rate limit, s ≪ θ0/a (assuming s and θ0 are both

positive). In that case the deformation is small and so satisfies the dispersion relation (27).

The n = 2 mode can propagate against the straining flow resulting in a steady state provided

its phase speed matches the induced rotation speed of the straining which can be shown to

be given by crot = −a2s/2η0, where η0 is the perturbation amplitude. Equating this to cp,2

from (29) we find the steady state requires

η0

a
=

3π

4

as

θ0
. (40)

Interestingly, this perturbation aspect ratio is proportional to the patch radius so a small

vortex will not deform as strongly as a large vortex in the same straining field. Alternatively,

this result suggests that small vortices require stronger strain values to cause vortex break-

up than a larger vortex and this is consistent with the local nature of the SQG Green’s

function. This has obvious consequences for the flow morphology of SQG turbulence. In

contrast, the corresponding two-dimensional Euler result predicts a perturbation aspect ratio

of η0/a = 2s/Ω which is independent of vortex size. Whether (40) can be generalized to finite

amplitudes as in the case of the Kida vortex is still an open question.

A
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Asymptotics of E1(r/a)

Here we derive the two asymptotic results for the function E1 which are referred to in section

2, equations (16) and (17).

A.1 Small |r/a − 1|

The calculation in Appendix B shows that the leading order term of the singularity at r = a

is the same for each of the En. Here we show that E0 is actually a complete elliptic integral

of the first kind for which there are well known asymptotic results and then the result for E1

follows. To do this we use the following integral definition of the Bessel functions which is

suitable when n is an integer:

Jn(κ) =
1

2π

∫ π

−π
ei(κ sin θ−nθ) dθ. (41)

Substituting for J0 in (14) gives

E0(ρ) =
1

4π2

∫ π

−π

∫ π

−π

∫ ∞

0
eiκ(sin θ+ρ sin φ) dκ dθ dφ (42)

where we have put ρ = r/a. Upon use of the identity

∫ ∞

0
eiκf(x) dκ = π

∑

{xi:f(xi)=0}

δ(x − xi)

|f ′(xi)|
, (43)

the integral (42) can be written as

E0(ρ) =
2

π

∫ π/2

0

dφ

(1 − ρ2 sin2 φ)1/2
. (44)

This is a standard definition of the complete elliptic integral of the first kind. It therefore

follows from a standard result (Gradshteyn & Ryzhik (2000)) that

E0(ρ) ≈
2

π

(

−
1

2
log |1 − ρ2| + 2 log 2

)

(45)

near ρ = 1, and so, by rearranging (57) to find

lim
ρ→1

(E1(ρ) − E0(ρ)) = −
2

π
, (46)
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we arrive at

E1(ρ) ≈
1

π
(− log |1 − ρ2| + 4 log 2 − 2). (47)

A.2 Large r/a

The n = 1 version of (42) is

E1(ρ) =
1

4π2

∫ π

−π

∫ π

−π

∫ ∞

0
eiκ(sin θ+ρ sinφ)e−i(θ+φ) dκ dθ dφ. (48)

With the aim of using (43) again, note that for large ρ the zeros of the first exponential occur

at φ ≈ −ρ−1 sin θ and φ ≈ ±π+ρ−1 sin θ. On substituting into (48) and rearranging we arrive

at

E1(ρ) ≈
1

2π

∫ π

−π

sin θ sin
(

sin θ
ρ

)

ρ| cos
(

sin θ
ρ

)

|
dθ (49)

≈
1

2πρ2

∫ π

−π
sin2 θ dθ (50)

=
1

2ρ2
. (51)

Similarly it can be shown that En(ρ) ∝ ρ−(n+1) for large ρ.

B

Calculation of limit in (26)

Here we evaluate the limit in (26), which we denote as αn:

αn = lim
ρ→1

(E1(ρ) − En(ρ)) =

∫ ∞

0
(J1(κ)J1(κ) − Jn(κ)Jn(κ)) dκ. (52)

These intregrals are finite even though the two individual components are not. Substituting

for the integral representation (41) gives

αn =
1

4π2

∫ π

−π

∫ π

−π

∫ ∞

0
eiκ(sin θ+sinφ)(e−i(θ+φ) − e−in(θ+φ)) dκ dθ dφ. (53)
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Upon using the identity (43), where here the exponent vanishes for θ = −φ and θ = φ±π for

φ >< 0, we find

αn =
1

4π

(

∫ 0

−π

e−i(2φ+π) − e−in(2φ+π)

| cosφ|
dφ+

∫ π

0

e−i(2φ−π) − e−in(2φ−π)

| cosφ|
dφ

)

, (54)

which can be written as

αn =
1

2π

∫ π

0

cos θ − cosnθ

sin(θ/2)
dθ (55)

by writing θ = 2φ + π and θ = 2φ − π in the first and second integrals respectively. This

integral can now be solved iteratively by considering αn+1 and expanding the cosine via the

trigonometric summation formulae. After further use of standard trigonometric identities we

arrive at

αn+1 = αn +
1

π

∫ π

0
sin

[

(n +
1

2
)θ

]

dθ (56)

= αn +
2/π

2n + 1
. (57)

So, noting from (52) that α1 = 0, the result we are after is

αn =
2

π

n
∑

j=2

(

1

2j − 1

)

. (58)
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Table 1: Analytic and numerically obtained phase speed values, nondimensionalised with

θ0. Also shown are the corresponding fitting error, see text, and numerical values from the

truncated formula (31).

Wavenumber Analytical phase speed Numerical result Fitting error Truncated formula

n cp,n c̃p,n σfit n(log n+ µ)/π

2 0.2122 0.2091 0.0012 0.2090

3 0.3395 0.3384 0.0020 0.3380

4 0.4305 0.4274 0.0025 0.4297

5 0.5012 0.4953 0.0022 0.5007

6 0.5591 0.5522 0.0032 0.5587

7 0.6081 0.5996 0.0040 0.6078

8 0.6505 0.6401 0.0046 0.6503
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