1. Theory

M(x, y) = 3 × 2 + xy is a homogeneous function since the sum of the powers of x and y in each term is the same (i.e. x2 is x to power 2 and xy = x1y1 giving total power of 1 + 1 = 2).

The degree of this homogeneous function is 2.

Here, we consider differential equations with the following standard form:

dy/dx = M(x, y)/N(x, y)

- where M(x, y) and N(x, y) are homogenous functions of the same degree.

To find the solution, change the dependent variable from y to v, where:

y = vx

The LHS of this equation becomes:

dy/dx = xdv/dx + v

- using the product rule for differentiation.

Solve the resulting equation by separating the variables v and x. Finally, re-express the solution in terms of x and y.

Note: This method also works for equations of the form:

dy/dx = ƒ ( y/x )

2. Exercises

Click on questions to reveal their solutions

Exercise 1:

Find the general solution of  dy/dx = xy + y2/x2

Solution:

RHS = quotient of homogenous functions of same degree (=2)

Set y = vx: i.e. d/dx(vx) = xvx + v2x2 / x2
  i.e. xdv/dx +v = v + v2 
Rearrange to separate variables:   xdv/dx = v2    (subtracted v from both sides)
  i.e. dv/v2 = dx/x
Integrate:   dv/v2 = dx/x
  i.e 1/v = ln x + C
Re-express in terms of x, y:   − x/y = ln x + C
  i.e. y = x/ln x + C

Exercise 2:

Solve 2xydy/dx = x2 + y2, given that y = 0 at x = 1

Solution:

Express equation in standard form: dy/dx = x2 + y2/2xy, i.e. quotient of homogenous functions that have same degree.

Set y = xv: i.e. d/dx(xv) = x2 + x2v2 / 2xxv
  i.e. xdv/dx + dx/dxv = x2(1 + v2)/ 2x2v
  i.e. xdv/dx + v = (1 + v2)/ 2v
Rearrange to separate variables:   xdv/dx = (1 + v2)/ 2vv(2v)/ (2v)
  i.e. xdv/dx = 1 − v2/ 2v
Integrate:   2v/(1 − v2)dv = dx/x
  i.e. −ln (1 − v2) = ln x + ln C
  i.e. ln [(1 − v2)−1] = ln x + ln C
  i.e. 1/1 − v2 = Cx
Re-express in terms of x, y   1/1 − y2/x2 = Cx
  i.e. x2/ x2y2 = Cx
  i.e. x/ C = x2y2

Particular solution: y = 0 when x = 1:

gives: 1/C = 1 − 0
C = 1
gives: x2y2  = x

Exercise 3:

Solve dy/dx = x + y/x and find the particular solution when y(1) = 1.

Solution:

Set y = xv:   xdv/dx + v = x + xv/ x
      = x/ x (1 + v) = (1 + v)
  i.e. xdv/dx = 1
Separate variables and integrate:   dv = dx/x
  i.e. v = ln x + ln k (ln k = constant)
  i.e. v = ln (kx)
Re-express in terms of x, y:   y/x = ln (kx)
  i.e. y = x ln (kx)

Particular solution with y = 1 when x = 1:

  1 = ln (k)
i.e. k = e1 = e
i.e. y = x ln (ex)
    = x[ln e + ln x)
    = x[1 + ln x]
i.e. y = x + x ln x

Exercise 4:

Solve xdy/dx = xy and find the particular solution when y(2) = 1/2

Solution:

Express equation in standard form: dy/dx = xy/x

Set y = vx: i.e. xdv/dx + v = x + xv/ x = 1 − v
  i.e. xdv/dx = 1 − 2v
Separate variables and integrate:   dv/1 − 2v = dx/x
  i.e. 1/2 ln (1 − 2v) = ln x + ln k
  i.e. ln [(1 − 2v)−½] − ln x = ln (k)
  i.e. ln [ 1/(1 − 2v)−½x ] = ln (k)
  i.e. 1 = kx(1 − 2v)½
Re-express in terms of x, y:   1 = kx(1 − 2y/x)½
  i.e. 1 = kx(x − 2y/ x)½
(square both sides)   1 = Kx2 (x − 2y/ x),  where K = k2
  i.e. 1 = Kx(x − 2y)

Particular solution with y = 1/ 2 when x = 2:

  1 = K⋅2 (2 − 2(1/ 2))
    = K⋅2⋅1
i.e. K = 1/2
2 = x2 − 2xy

Exercise 5:

Solve dy/dx = x − 2y/x and find the particular solution when y(1) = −1

Solution:

Set y = xv:   xdv/dx + v = x − 2xv/ x
      = 1 − 2v
  i.e. xdv/dx = 1 − 3v
Separate variables and integrate:   dv/1 − 3v = dx/x
  i.e. 1/(−3) ln (1 − 3v) = ln x + ln k (ln k = constant)
  i.e. ln (1 − 3v) = −3 ln x − ln k
  i.e. ln (1 − 3v) + ln x3 = −3 ln k
  i.e. ln [x3(1 − 3v)] = −3 ln k
  i.e. x3(1 − 3v) = K   where K = constant
Re-express in terms of x, y:   x3 (1 − 3y/x) = K
  i.e. x3 (x − 3y/x) = K
  i.e. x2 (x − 3y) = K

Particular solution with y(1) = −1:

  1(1 + 3) = K
i.e. K = 4
x2 (x − 3y)  = 4

Exercise 6:

Given that dy/dx = x + y/xy, prove that tan−1 ( y/x ) = 1/2 ln (x2 + y2) + A, where A is an arbitrary constant.

Solution:

The equation is already in standard form, with quotient of two first degree homogeneous functions.

Set y = xv:   xdv/dx + v = x + vx/ xvx
  i.e. xdv/dx = x(1 + v)/ x(1 − v)v
      = (1 + vv(1 − v)/ 1 − v
  i.e. xdv/dx = 1 + v2/ (1 − v)
Separate variables and integrate:   1 − v/ (1 + v2)dv = dx/x
  i.e. dv/ (1 + v2)1/2 2v/ (1 + v2)dv = dx/x
  i.e. tan−1v1/2 ln (1 + v2) = ln x + A
Re-express in terms of x, y:   tan−1 (y/x)1/2 ln (1 + y2/x2) = ln (x) + A
    tan−1 (y/x) = 1/2 ln (x2 + y2/x2) + 1/2 ln (x2) + A
      = 1/2 ln [ (x2 + y2/x2)x2 ] + A
    ∴  tan−1 (y/x) = 1/2 ln (x2 + y2) + A

Exercise 7:

Find the general solution of 2x2dy/dx = x2 + y2

Solution:

Express equation in standard form: dy/dx = x2 + y2/2x2

Set y = xv: i.e. xdv/dx + v = x2 + x2v2/ 2x2
      = 1 + v2/2
  i.e. xdv/dx + v = 1 + v2/22v/2
      = 1 + v2 − 2v/2
Separate variables and integrate:   dv/ 1 − 2v + v2 = 1/2 dx/x
  i.e. dv/ (1 − v)2 = 1/2 dx/x
[ Note: 1 − v is a linear function of v, therefore we use a Standard Integral and divide by the coefficient of v. In other words, let w = 1 − v, so: dw/dv = −1.
  and dv/ (1 − v)2 = 1/ (−1) dw/ w2 ]
  i.e. dw/ w2 = 1/2 dx/x
  i.e. (1/ w ) = 1/2 ln x + C
  i.e. 1/ 1 − v = 1/2 ln x + C
Re-express in terms of x, y:   1/ 1 − y/ x = 1/2 ln x + C
  i.e. x/ xy = 1/2 ln x + C
  i.e. 2x = (xy)(ln x + C')     (C' = 2C)

Exercise 8:

Find the general solution of (2xy)dy/dx = 2yx

Solution:

Express equation in standard form: dy/dx = 2yx/2xy

Set y = vx: i.e. xdv/dx + v = 2v − 1/ 2 − v
  xdv/dx = 2v − 1 − v(2 − v)/ 2 − v
      = v2 − 1/ 2 − v
Separate variables and integrate:   2 − v/v2 − 1 dv = dx/x
Use Partial Fractions to help solve LHS: 2 − v/v2 − 1 = A/v − 1 + B/v + 1 = A(v + 1) + B(v − 1)/ v2 − 1
A + B = −1, AB = 2   ⇒  A = 1/2 and B = −3/2
  i.e. 1/2 ( 1/v − 13/v + 1 ) dv = dx/x
  i.e. 1/2 ln (v − 1) − 3/2 ln (v + 1) = ln x + ln k
  i.e. ln [ (v − 1)1⁄2/ (v + 1)3⁄2; ] = ln (k)
  i.e. v − 1/ (v + 1 )3x2 = k2
Re-express in terms of x, y:   (y/x − 1) / (y/x + 1)3x2 = k2
  i.e. ((yx)/x) / (y + x/x)3x2 = k2
  i.e. yx = K(y + x)3

Note: The key to solving the next three equations is to recognise that each equation can be written in the form:

dy/dx = ƒ ( y/x )ƒ(v)

Exercise 9:

Find the general solution of dy/dx = y/x + tan  ( y/x )

Solution:

RHS is only a function of v = dy/dx, so substitute and separate variables.

Set y = xv:   xdv/dx + v = v + tan v
  i.e. xdv/dx = tan x
Separate variables and integrate:   dv/tan v = dx/x
  { Note: cos v/sin vdv ƒ′(v)/ƒ(v)dv = ln [ƒ(v)] + C }
  i.e. ln [sin v] = ln x + ln k   (ln k = constant)
  i.e. ln [ sin v/x ] = ln k
  i.e. sin v/x = k
  i.e. sin v = kx
Re-express in terms of x, y:   sin (y/x) = kx

Exercise 10:

Find the general solution of xdy/dx = y + x ey/x

Solution:

Rewrite equation so that RHS is a function of y/x only:

    dy/dx = (y/x) + e y/x
Set y = xv:   xdv/dx + v = v + ev
Separate variables and integrate:   evdv = dx/x
  i.e. −ev = ln x + ln k
      = ln (kx)
  i.e. ev = − ln (kx)
Re-express in terms of x, y:   ey/x = − ln (kx)
  i.e. y/x = ln [− ln (kx)]
  i.e. y = − x ln [−ln (kx)]

Exercise 11:

Find the general solution of xdy/dx = y + x2 + y2

Solution:

Rewrite equation so that RHS is a function of y/x only:

    dy/dx = y/x + 1/x x2 + y2
      = y/x + 1 + (y/x)2
Set y = xv:   xdv/dx + v = v + 1 + v2
  i.e. xdv/dx = 1 + v2
Separate variables and integrate:   dv/ 1 + v2 = dx/x
{ Use Standard Integral: dv/ 1 + v2 = sinh−1 (v) + C }
  i.e. sinh−1 (v) = ln (x) + A
Re-express in terms of x, y:   sinh−1(y/x) = ln (x) + A

3. Standard Integrals

ƒ(x) ƒ(x) dx   ƒ(x) ƒ(x) dx
xn xn+1/ n+1 (n ≠ −1)   [g(x)]ng'(x) [g(x)]n+1/ n+1 (n ≠ −1)
1/x ln x   g'(x)/g(x) ln g(x)
ex ex   ax ax/ln a (a > 0)
sin x −cos x   sinh x cosh x
cos x sin x   cosh x sinh x
tan x − ln cosx   tanh x ln cosh x
cosec x ln tan  x/2   cosech x ln tanh  x/2
sec x ln sec x + tan x   sec x 2 tan−1ex
sec2x tan x   sec2x tanh x
cot x ln sin x   cot x ln sinh x
sin2x x/2sin 2x/4   sinh2x sinh 2x/4x/2
cos2x x/2 + sin 2x/4   cosh2x sinh 2x/4 + x/2
1/ a2 + x2 1/ a tan −1x/ a   (a > 0)   a2 + x2 a2/ 2 [ sinh−1( x/ a ) + x a2x2 / a2 ]
1/ a2x2 1/ 2a ln  a + x/ ax    (0 < x < a)   a2x2 a2/ 2 [ sin−1( x/ a ) + x a2x2 / a2 ]
1/ x2a2 1/ 2a ln  xa/ x + a   (x > a > 0)   x2a2 a2/ 2 [−cosh−1( x/ a ) + x x2a2 / a2 ]
1/ a2 + x2 ln  x + a2 + x2 / a    (a > 0)      
1/ a2x2 sin−1x/ a     (−a < x < a)   1/ x2a2 ln  x + x2a2 / a   (x > a > 0)

PPLATO material © copyright 2004, University of Salford