1. Theory

Consider an integral of the form:

    ƒ′(x)/ƒ(x)dx

Letting u = ƒ(x), then du/dx = ƒ′(x), and this gives: du = ƒ′(x) dx.

So:

    ƒ′(x)/ƒ(x)dx =     1/ƒ(x)⋅ƒ′(x) dx
  =     du/u
  = ln u + C

The general result is:

    ƒ′(x)/ƒ(x)dx = ln ƒ(x) + C

This is a useful generalisation of the standard integral:

    1/xdx = ln x + C

that applies straightforwardly when the top line of what we are integrating is a multiple of the derivative of the bottom line.

2. Exercises

Perform the following integrations.

Click on the questions to reveal their solution

Exercise 1:

    10x + 3/5x2 + 3x − 1dx

Solution:

    10x + 3/5x2 + 3x − 1 dx is of the form     ƒ′(x)/ƒ(x) = ln ƒ(x) + C

Let u = 5x2 + 3x − 1 then du/dx = 10x + 3 and du = (10x + 3) dx

       10x + 3/5x2 + 3x − 1dx =     du/u
  = ln u + C
  = ln 5x2 + 3x − 1 + C

Exercise 2:

   3x2/x3 − 6dx

Solution:

    3x2/x3−6 dx is of the form     ƒ′(x)/ƒ(x) = ln ƒ(x) + C

Let u = x3 − 6 then du/dx = 3x2 and du = (3x2) dx

       3x2/x3 − 6 dx =     1/u du
= ln u + C
= ln x3 − 6 + C

Exercise 3:

    4x2/x3 − 1 dx

Solution:

    4x2/x3−1 dx is of the slightly more general form     k ƒ′(x)/ƒ(x) = k     ƒ′(x)/ƒ(x) = kln ƒ(x) + C

where k is a constant, i.e. the top line is a multiple of the derivative of the bottom line.

Let u = x3 − 1 then du/dx = 3x2 and du/3 = (x2) dx

   4     x2/x3−1 dx = 4     1/u du/3
= 4/3ln u + C
= 4/3ln x3−1 + C

Exercise 4:

    2x − 1/x2x − 7dx

Solution:

    4x2/x3−1 dx is of the form     ƒ′(x)/ƒ(x) = ln ƒ(x) + C

Let u = x2x − 7 then du/dx = 2x − 1 and du = (2x − 1) dx

       2x − 1/x2x − 7dx =     du/u
= ln u + C
= ln x2x − 7 + C

Exercise 5:

    x − 1/x2 − 2x + 7dx

Solution:

    x − 1/x2 − 2x + 7 dx is of the slightly more general form     kƒ′(x)/ƒ(x) = k    ƒ′(x)/ƒ(x) = k ln ƒ(x) + C

where k is a constant, i.e. the top line is a multiple of the derivative of the bottom line.

Let u = x2 − 2x + 7, then du/dx = 2x − 2 and du = (x2) dx

so that du/2 = (x − 1) dx

  4    x − 1/x2 − 2x + 7dx =     1/2 du/u
= 1/2 ln u + C
= 1/2 ln x2 − 2x + 7 + C

Exercise 6:

    8x/x2 − 4dx

Solution:

Let u = x2 − 4 then du/dx = 2x and du/2 = (x) dx

       8x/x2 − 4dx = 8    1/u du/2
= 4 ln u + C
= 4 ln x2 − 4 + C

Exercise 7:

    x2/x3 + 2 dx

Solution:

Let u = x3 + 2 then du/dx = 3x2 and du/3 = (x2) dx

       x2/x3 + 2dx =     1/u du/3
= 1/3 ln u + C
= 1/3 ln x3 + 2 + C

Exercise 8:

    sin (x)/cos (x)dx

Solution:

Let u = cos (x) then du/dx = − sin (x) and du/(−1) = sin (x) dx

       sin (x)/cos (x)dx =     1/u du/(−1)
=     du/u
= − ln u + C
= − ln cos (x) + C

Exercise 9:

    cos (x)/sin (x) dx

Solution:

Let u = sin (x) then du/dx = cos (x) and du= cos (x) dx

       cos (x)/sin (x)dx =     1/u du
= ln u + C
= ln sin (x) + C

Exercise 10:

    cos (x)/5 + sin (x) dx

Solution:

Let u = 5 + sin (x) then du/dx = cos (x) and du= cos (x) dx

       cos (x)/5 + sin (x) dx =     1/u du
= ln u + C
= ln 5 + sin (x) + C

Exercise 11:

    sinh (x)/1−cosh (x) dx

Solution:

Let u = 1 − cosh (x) then du/dx = −sinh (x) and du= sinh (x) dx

       sinh (x)/1 − cosh (x) dx =     1/u (−du)
= − ln u + C
= − ln 1 − cosh (x) + C

3. Standard Integrals

ƒ(x) ƒ(x) dx   ƒ(x) ƒ(x) dx
xn xn+1/n+1 (n ≠ −1)   [g(x)]ng'(x) [g(x)]n+1/n+1 (n ≠ −1)
1/x ln x   g'(x)/g(x) ln g(x)
ex ex   ax ax/ln a (a > 0)
sin x −cos x   sinh x cosh x
cos x sin x   cosh x sinh x
tan x − ln cosx   tanh x ln cosh x
cosec x ln tan  x/2   cosech x ln tanh  x/2
sec x ln sec x + tan x   sec x 2 tan−1ex
sec2x tan x   sec2x tanh x
cot x ln sin x   cot x ln sinh x
sin2x x/2sin 2x/4   sinh2x sinh 2x/4x/2
cos2x x/2 + sin 2x/4   cosh2x sinh 2x/4 + x/2
1/a2 + x2 1/a tan −1x/a   (a > 0)   a2 + x2 a2/2[ sinh−1(x/a) + x a2x2/a2]
1/a2x2 1/2a ln  a + x/ax    (0 < x < a)   a2x2 a2/2[ sin−1(x/a) + x a2x2/a2]
1/x2a2 1/2a ln  xa/x + a   (x > a > 0)   x2a2 a2/2[−cosh−1(x/a) + x x2a2/a2]
1/ a2 + x2 ln  x + a2 + x2/a   (a > 0)      
1/ a2x2 sin−1x/a     (−a < x < a)   1/ x2a2 ln  x + x2a2/a   (x > a > 0)

PPLATO material © copyright 2004, University of Salford