![]() |
Integration by Subsitution I |
PPLATO @ | ||||
PPLATO / Tutorials / Integration |
||||||
|
![]() |
Consider an integral of the form:
∫ ƒ(ax + b)
where a and b are constants. We have here an unspecified function ƒ of a linear function x.
Letting u = ax + b, then dudx = a, and this gives dx = dua
This allows us to change the integration variable from x to u.
The final result is
∫ ƒ(ax + b) dx = 1a ∫ ƒ(u) du |
---|
- where u = ux + b
This is a general result for integrating functions of a linear function x.
Each application of this result involves dividing by the coefficient of x and then integrating.
Perform the following integrations.
Click on the questions to reveal their solution
Exercise 1:
Solution: Let u = 2x − 1, then du dx = 2 and dx = du2.
∫ (2x−1)3dx = ∫ u3 du2 | = | 12 ∫ u3du |
= | 12⋅14 u4+C | |
= | 18 (2x − 1)4 + C |
Note: The final result can also be obtained using the general pattern:
- where a = 2 and ∫ ƒ(u) du is ∫ u3 du.
Exercise 2:
Solution: Let u = 3x + 5, then dudx = 3 and dx = du3.
∫ cos (3x + 5) dx = ∫ cos (u)⋅ du3 | = | 13 ∫ cos (u) du |
= | 13 sin (u) + C | |
= | 13 sin (3x + 5)4 + C |
Note: The final result can also be obtained using the general pattern:
- where a = 3 and ∫ ƒ(u) du is ∫ cos (u) du.
Exercise 3:
Solution: Let u = 5x + 2, then du dx = 5 and dx = du5.
∫ e5x+2dx = ∫ eu du5 | = | 15 ∫ eudu |
= | 15 eu + C | |
= | 15 e5x + 2 + C |
Note: The final result can also be obtained using the general pattern:
- where a = 5 and ∫ ƒ(u) du is ∫ eu du.
Exercise 4:
Solution: Let u = 3x, then dudx = 3 and dx = du3.
∫ sinh (3x) dx = ∫ sinh (u)⋅du3 | = | 13 ∫ sinh (u) du |
= | 13 cosh (u) + C | |
= | 13 cosh (3x) + C |
Note: The final result can also be obtained using the general pattern:
- where a = 3 and ∫ ƒ(u) du is ∫ sinh (u) du.
Exercise 5:
Solution: Let u = 2x − 1, then dudx = 2 and dx = du2.
∫ dx2x − 1 = ∫ duu⋅12 | = | 12 ∫ duu |
= | 12 ln u + C | |
= | 12 ln 2x − 1 + C |
Note: The final result can also be obtained using the general pattern:
- where a = 2 and ∫ ƒ(u) du is ∫ duu
Exercise 6:
Solution: Let u = 5x − 1, then dudx = 5 and dx = du5.
∫ dx1 + (5x)2 = ∫ du1 + u2⋅15 | = | 15 ∫ du1 + u2 |
= | 15 tan−1 u + C | |
= | 15 tan−1 5x + C |
Note: The final result can also be obtained using the general pattern:
- where a = 5 and ∫ ƒ(u) du is ∫ du1 + u2
Exercise 7:
Solution: Let u = 7x + 1, then dudx = 7 and dx = du7.
∫ sec2 (7x + 1) dx | = | 17 ∫ sec2 u du |
= | 17 tanu + C | |
= | 17 tan (7x + 1) + C |
Note: The final result can also be obtained using the general pattern:
- where a = 7 and ∫ ƒ(u) du is ∫ sec2udu.
Exercise 8:
Solution: Let u = 3x − 1, then dudx = 3 and dx = du3.
∫ sin (3x − 1) dx | = | 13 ∫ sin (u) du |
= | −13 cos (u) + C | |
= | −13 cos (3x − 1) + C |
Note: The final result can also be obtained using the general pattern:
- where a = 3 and ∫ ƒ(u) du is ∫ sin (u) du.
Exercise 9:
Solution: Let u = 1 + 2x, then dudx = 2 and dx = du2.
∫ cosh (1 + 2x) dx = | = | 12 ∫ cosh (u) du |
= | 12 sinh (u) + C | |
= | 12 sinh (1 + 2x) + C |
Note: The final result can also be obtained using the general pattern:
- where a = 2 and ∫ ƒ(u) du is ∫ cosh (u) du.
Exercise 10:
Solution: Let u = 9x − 1, then dudx = 9 and dx = du9.
∫ tan (9x − 1) dx = ∫ tan(u) du9 | = | 19 ∫ tan (u) du |
= | −19 ln cos (u) + C | |
= | −19 ln cos (9x − 1) + C |
Note: The final result can also be obtained using the general pattern:
- where a = 9 and ∫ ƒ(u) du is ∫ tan (u) du.
ƒ(x) | ∫ƒ(x) dx | ƒ(x) | ∫ƒ(x) dx | |
---|---|---|---|---|
xn | xn+1n+1 (n ≠ −1) | [g(x)]n g'(x) | [g(x)]n+1n+1 (n ≠ −1) | |
1x | ln x | g'(x)g(x) | ln g(x) | |
ex | ex | ax | axln a (a > 0) | |
sin x | −cos x | sinh x | cosh x | |
cos x | sin x | cosh x | sinh x | |
tan x | − ln cosx | tanh x | ln cosh x | |
cosec x | ln tan x2 | cosech x | ln tanh x2 | |
sec x | ln sec x + tan x | sec x | 2 tan−1ex | |
sec2 x | tan x | sec2 x | tanh x | |
cot x | ln sin x | cot x | ln sinh x | |
sin2 x | x2 − sin 2x4 | sinh2 x | sinh 2x4 − x2 | |
cos2 x | x2 + sin 2x4 | cosh2 x | sinh 2x4 + x2 | |
1a2 + x2 | 1a tan −1 xa (a > 0) | √a2 + x2 | a22[ sinh−1(xa) + x √a2−x2a2] | |
1a2 − x2 | 12a ln a + xa − x (0 < x < a) | √a2−x2 | a22[ sin−1(xa) + x √a2−x2a2] | |
1x2 − a2 | 12a ln x − ax + a (x > a > 0) | √x2 − a2 | a22[−cosh−1(xa) + x √x2−a2a2] | |
1 √ a2 + x2 | ln x + √a2 + x2a (a > 0) | |||
1 √ a2 − x2 | sin−1 xa (−a < x < a) | 1 √ x2 − a2 | ln x + √x2 − a2a (x > a > 0) |