
t 103 (2006) 324–337
www.elsevier.com/locate/rse
Remote Sensing of Environmen
Local-scale heterogeneity of photosynthetically active radiation (PAR),
absorbed PAR and net radiation as a function of topography,

sky conditions and leaf area index

Andrew Oliphant ⁎, C. Susan, B. Grimmond, Hans-Peter Schmid, Craig A. Wayson

San Francisco State University, CA, USA

Received 1 July 2004; received in revised form 5 September 2005; accepted 17 September 2005
Abstract

The local-scale spatial distribution of photosynthetically active radiation (PAR), absorbed PAR (APAR) and net all-wave radiation (Q⁎) across
the top of a forest canopy was investigated as a function of topography, sky conditions and forest heterogeneity for a forested hilly study site
located in south-central Indiana, USA that is part of the FLUXNET and SpecNet networks. The method to estimate spatial variability of radiation
components utilized theoretical radiation modeling applied to a topographic model combined with spatial distribution of leaf area index derived
from IKONOS imagery and empirical models derived from data collected on a single flux tower. Modeled PAR and Q⁎ compared consistently
well with observations from a single tower with differences typically less than 10%, although clear-sky conditions were simulated more accurately
than cloudy conditions. Spatial variability of radiation was found to be very sensitive to topographic relief and could be scaled linearly by mean
slope angle. Decreases in optical transmissivity and increases in cloudiness had a strong effect of reducing both the spatial average and standard
deviation of radiation components. Spatial variability of APAR was 53% greater than PAR and the characteristic scale of variance was reduced due
to finer scale and magnitude of variance of LAI. Clear seasonal patterns existed in both spatial average and standard deviation values with summer
producing the largest mean values and weakest spatial variability due to smaller solar zenith angles and seasonality in both optical transmissivity
(scaled linearly by specific humidity) and cloudiness. These findings of spatial variability illustrate the need to characterize the complex landscape
patterns at flux tower sites, particularly where the goal is to relate flux tower data to satellite imagery.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Radiation fluxes at the Earth's surface play important roles in
many ecological, climatological, and hydrological systems.
Biological activity is strongly dependent on radiative transfer
both directly, through the interaction between phytoelements
and radiant energy emitted by the sun, and indirectly through
micrometeorological controls. Understanding the spatial distri-
bution of photosynthetically active radiation (PAR) is important
for predicting patterns of ecosystem functioning within a forest
(Vierling & Wessman, 2000) and gross ecological production
(GEP) has been directly linked with PAR in numerous studies
(e.g. Goulden et al., 1997; Gu et al., 1999; Monteith, 1972;
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Oliphant et al., 2002; Schmid et al., 2000). Improvements in
remote sensing technology and techniques to estimate photo-
synthetic activity using hyperspectral sensors can be used to
assess small scale spatial variability of ecosystem dynamics
(Blackburn, 1999; Gamon et al., 1993; Rahman et al., 2001,
2003). Net all-wave radiation provides the fundamental input to
the surface energy balance and spatial variability has been
linked with a variety of biometeorological controls including
surface climates (Kalthoff et al., 1999) and rates of evapotrans-
piration (Famiglietti & Wood, 1995) as well as boundary layer
processes and local thermal circulations (Kossmann et al.,
2002). Since seasonality plays a critical role in temporal
variability of ecosystem functioning, it is also important to
observe the role of seasons on spatial variability of radiation due
to changing geometric relations, optical transmissivity and
cloud conditions.
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Fig. 1. Site map of the study area within the Morgan–Monroe State Forest, south-central Indiana, USA; shaded relief map (left) and LAI map (right) generated from
IKONOS satellite imagery captured July 6, 2000. Elevation ranges from 192 m to 297 m. T indicates the location of the 46-m instrumented tower. Note, image has less
coverage to the east of the tower than the topographic map.
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Current theoretical models and satellite derived data can
provide valuable insight into spatial variability of surface
radiation fluxes (Diak et al., 2004; Dubayah et al., 1990;
Dubayah & Loechel, 1997; McKenney et al., 1999; Oliphant et
al., 2003). Here we explore the use of theoretical models of
surface radiation fluxes in complex topography, IKONOS
imagery (visible and near-infrared) and empirical relations
determined from data collected from a single flux tower to
estimate components of spatial variability of (PAR), absorbed
PAR (APAR) and net all-wave radiation (Q⁎) for a forested hilly
region of mid-western USA. The primary objective is to
estimate local-scale spatial heterogeneity of radiative fluxes at
the top of the forest canopy across a topographically complex
area. In particular we examine the role of topography, forest
heterogeneity, optical transmissivity, cloud cover and season-
ality on spatial variability of radiation.

Combining ecosystem modeling, satellite image interpreta-
tion and point observations has greatly enhanced the spatial
understanding of ecosystem–atmosphere interaction at the
continental to global scale (Running et al., 1999), although
there remains a need to improve understanding of small-scale
variability to inform downscaling of regional or larger models.
Furthermore, characterization of ecosystem–atmosphere inter-
Table 1
Instrumentation used in the present study and factory estimates of accuracy

Variable Height Manufacturer

K↓, K↑ 46 m Kipp and Zonen, Delft, T
L↓, L↑ 46 m Kipp and Zonen, Delft, T
PAR 46 m Licor, Lincoln, NE
Air temperature 46 m Vaisala, Sunnyvale, CA
Relative humidity 46 m Vaisala, Sunnyvale, CA
Atmos. pressure Surface Vaisala, Sunnyvale, CA
action is often based on data collected at individual towers using
the eddy covariance approach (e.g. Schmid et al., 2000) as well as
optical sampling techniques (Gamon et al. this issue). Assessing
the spatial distribution of radiation components is therefore an
important step toward scaling up of point measurements to
regional-scale ecosystem estimates and variability within the
source areas of turbulent flux measurements.

2. Site description and observational data

The location for this research was the Morgan–Monroe State
Forest (MMSF) in south-central Indiana, mid-western USA
(39°19′N, 86°25′W). MMSF is an extensive managed forest
with a total area of 95.3 km2 (Schmid et al., 2000). The area
used for model and image analysis in this study is a 3.5×3.5 km
area of near-contiguous forest cover. At the center of this area
on a ridge top with unobstructed sky view, is a 46-m
instrumented AmeriFlux tower. Fig. 1 shows the shaded relief
within the study area and the leaf area index (LAI) estimated
from an IKONOS satellite image captured July 6, 2000 (4 m
pixel size), using the empirical conversion from the normalized
difference vegetation index (NDVI) described by Wulder et al.
(1998); LAI=17.35×NDVI−9.01. The spatial average LAI
Model Accuracy

he Netherlands CM3 ±10% (daily sums)
he Netherlands CG3 ±10% (daily sums)

LI190 ±2% (per year)
HMP35C ±0.4 °C
HMP35C ±3%
PTA 427 ±4 hPa (−20–45 °C)
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estimated for the study area is 3.4 m2 m−2, while the spatial
standard deviation is 0.85 m2 m−2. Values in the vicinity of the
tower are 4–4.5 m2 m−2, which compare closely with mid-
summer observations using a leaf area index meter (LAI-2000,
LiCor Inc, Lincoln Nebraska as reported in Oliphant et al.
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Fig. 2. Monthly mean and standard deviation of diurnal mean radiation flux
densities from 46 m on the MMSF tower, March 1998 to December 2001, a)
shortwave radiation (K↓, K↑), b) albedo, c) longwave radiation (L↓, L↑), d)
Photosynthetically active radiation (PAR), e) net all-wave radiation (Q⁎).
(2004). The area has a ridge-ravine topography with a relative
relief of <60 m, and an overall elevation range of <100 m.
Mean slope angle within the study area (Fig. 1) is 10.6°,
estimated from a digital elevation model (DEM) at 5 m
resolution. Slope aspect is fairly randomly distributed but with a
slight general southerly orientation. The MMSF is composed of
secondary successional broadleaf forest within the maple–
beech to oak–hickory transition zone of the eastern deciduous
forest, with a mean canopy height of 25–27 m. The forest is
comprised predominantly of sugar maple (Acer saccharum,
27%), tulip poplar (Liriodendron Tulipifera, 19%), sassafras
(Sassafras albidiom, 9.5%), white oak (Quercus alba, 9%), and
black oak (Quercus nigra, 8.5%). A more detailed breakdown
of species composition is given in Ehman et al. (2002).

The tower (see Fig. 1) is used for flux measurements of CO2,
heat, water vapor and radiation as part of the AmeriFlux and
FLUXNET observational networks as well as general meteoro-
logical variables (Schmid et al., 2000). This site is also part of the
SpecNet network, where remote sensing is systematically
applied and linked to eddy covariance data (e.g. Rahman et
al., 2004) for an improved understanding of controls on surface-
atmosphere fluxes. In this study, radiation data fromMarch 1998
to December 2000 from the 46 m level are used for empirical
parameterization of the model, while data from January 2000 to
December 2001 are used to assess the model's climatological
representation of seasonal and inter-annual variability. The
radiation components measured at that level include incoming
(↓) and outgoing (↑) short (K) and long (L) wave radiation (in W
m−2) and incoming PAR (in quantum units of μmol m−2 s−1).
Instrumentation details are provided in Table 1.

By way of introducing the seasonal context for this study,
monthly mean and standard deviation of diurnal mean radiation
fluxes and albedo, based on data from March 1998 to December
2001, are presented in Fig. 2. Strong seasonality can be seen in
each of the variables. For K↓, K↑ and PAR, the importance of
solar declination for this mid-latitude site is evident, while the
large annual range in L↓ and L↑ indicate the continental
influence of the location on air and surface temperature. The
influence of foliage on the radiation budget is evident in the
seasonal albedo pattern. Albedo abruptly increases with
emergence of leaves in spring and then steadily declines as
the foliage darkens throughout the summer. The effect of snow
falls, particularly in December and January can also be seen to
increase both monthly mean and variability of albedo. The intra-
monthly variability of radiation components is significant and
varies seasonally, suggesting the importance of cloudiness and
synoptic changes throughout the year. In sum however, Q⁎

shows a reasonably consistent increase in temporal variability
toward the summer months when mean values are largest.

3. Spatial model description

Surface radiation modeling in complex terrain has received
growing attention in recent decades, although many studies have
tended to focus on individual components, primarily incident
shortwave radiation (Dubayah et al., 1990; Dubayah & Rich,
1995; Dubayah& van Katwijk, 1992; Kumar et al., 1997; Olseth
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& Skartveit, 2001; Whiteman, 1990; Whiteman & Allwine,
1986) or net shortwave radiation (Dubayah & Loechel, 1997),
but including longwave radiation (Marks & Dozier, 1979), and
PAR (Olseth & Skartveit, 1997), as well as the complete
radiation budget (Gallant, 1997; McKenny et al., 1999; Nunez,
1980; Oliphant et al., 2003; Wang et al., 2002). The surface
radiation model used in this study is based on calculations ofK↓,
PAR, and fluxes of longwave radiation across a surface
generated by a DEM, using sun–Earth geometric relations and
parameters derived empirically from tower data. Additionally,
APAR is derived from modeled PAR and summertime leaf area
index determined from IKONOS satellite imagery (Fig. 1).
Alados and Alados-Arboledas (1999) suggested that closed
stands of plants can be treated as inclined surfaces receiving the
global irradiance corresponding to the surface inclination. This
assumes that canopy height is uniform across the landscape and
leaf orientation reflects that of the surface. Based on visual
observations of the forest from above, it is clear that the canopy
surface generally follows the topographic surface, although the
mixed forest produces individual tree height variability that adds
additional ‘topographic’ heterogeneity at a smaller scale
(∼10 m). This effect, not accounted for in the current study, is
expected to be small for average radiation fluxes at the scale of
local topography, although implies underestimation in our
calculation of spatial variability.

3.1. Global solar radiation

Initially, extraterrestrial shortwave irradiance on a horizontal
surface just outside the Earth's atmosphere (Koh) is calculated as
a function of the solar constant (1367 W m−2), latitude, time of
year and hour angle, based on the formulae of Kondratyev
(1977). Incident direct beam shortwave radiation on a horizontal
plane at the Earth's surface (KSh) as well as the diffuse beam
component (KD) which is irrespective of slope angle is then
calculated using:

KSh ¼ Kohs
m ð1Þ

and

KD ¼ ð0:271−0:294smÞKoh ð2Þ

where τ is the transmission coefficient or fraction of radiation
incident at the top of the atmosphere which reaches the Earth's
surface along the vertical path and m is the ratio of the path
length in the direction of the sun at zenith angle (z) to the path
length in the vertical direction and is given bym=sec z=1 /cos z
(Gates, 1980; Linacre, 1992). Since the curvature of the Earth
unrealistically inflates m when z is less than about 60°, values in
this range are taken from List (1968). The derivation of τ is
discussed in Section 3.2.

KD was then divided between 5° circumsolar (KDc) and
isotropic (KDi) fractions of KD, using a circumsolar coefficient
(γ) of 0.25 after Linacre (1992) so that KDc=KDγ and KDi=KD

(1−γ). A sky view factor (ψs) is calculated for each grid point
using the one-dimensional horizon algorithm of Dozier et al.
(1981) and KDi is reduced by a factor of 1−ψs. KDc and KS are
then calculated for sloping surfaces using the cosine law:

KS ¼ KShcosi ð3Þ
where i is the angle between the solar beam and normal to the
sloping surface. This can be derived from:

cos i ¼ cos s cos zþ sin s sin z cosðA−AsÞ ð4Þ
where s is the slope angle, A is the solar azimuth angle and As

the azimuth angle of the slope. The grid points with and without
shading (both self shading and shading from surrounding
terrain) at each interval were then determined and KS and KDc

were removed from shaded grid points. The contribution of
reflected shortwave radiation (Kr) arriving at each grid point
was also determined using:

Kr ¼ ðKS þ KDÞð1−wsÞa ð5Þ

where α is albedo, derived from monthly average observations
at the tower. Albedo is assumed to be isotropic in calculating
this component. The total shortwave radiation (KTS) for clear
skies was calculated from:

KTS ¼ KDc þ KDi þ KS þ Kr: ð6Þ

These calculations were performed across the spatial domain
at 3° hour-angle (12-minute) intervals from sunrise to sunset.

3.2. Optical transmissivity and cloudiness

Reduction in atmospheric clarity is caused by absorption,
reflection and scattering of solar radiation by gases, particulates
and water droplets along the atmospheric path. The first two are
often considered together in the form of the optical transmission
coefficient, and change relatively little over shorter time scales
of hours to days (Wilson & Gallant, 2000), while the third
identifies the importance of cloudiness which can have dramatic
control over radiative transfer on the time scale of minutes to
hours (Gu et al., 2001). In this study, we estimate the clear-sky
optical transmission coefficient and cloud controls separately.

The transmission coefficient (τ) was estimated for each
daylight hour using all clear sky days by:

s ¼ KSho

Koh

� �1
m

ð7Þ

where KSho is the observed shortwave radiation received at a
horizontal surface (on tower). Fig. 3a shows the seasonal trend
of τwith lowest values occurring in summer months and highest
in winter and Fig. 3b shows that the seasonal variability in τ is
negatively correlated with specific humidity (q) at 46 m on the
tower. The annual range of monthly mean τ is 0.11, which
impacts both the total amount of solar radiation reaching the
surface and the ratio of KD to KS which also impacts the spatial
variability (Eqs. (1) and (2)). For the MMSF case, seasonal
variability of τ can be largely accounted for by q using relatively
simple empirical models (Fig. 3b). However, although q
contributes to τ, it cannot be concluded that it is the dominant
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Fig. 3. Monthly mean and standard deviation of diurnal mean optical transmissivity (τ), a) over the annual cycle and b) as a function of monthly mean and standard
deviation of daily mean specific humidity (q) at 46 m. Vertical error bars show standard deviation of τ, horizontal bars show standard deviation of q. Data include all
available complete clear-sky days (n = number of days in sample) from March 1998 to December 2001.
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cause since, for example, summertime high levels of q coincides
with high temperatures and levels of UV, both precursors to
ozone production, which also reduces τ.

In order to identify the effect of clouds on K↓ accurately,
many properties of the sky cover are required, including cloud
cover area, location in the sky with respect to the sun, cloud
density, cloud height, and cloud type. Since these properties are
not known in detail for this site and are difficult to determine
accurately, a simple cloudiness index (kc) is used. kc has been
determined for a variety of applications including assessing
variability in net ecosystem exchange based on attenuation of
solar radiation (Gu et al., 1999) and longer term climate change
analyses using thermal infrared radiation (Marty, 2000), which
has the advantage of providing nocturnal values. Since we are
interested in the role of clouds on solar radiation, we use a simple
index based on the difference between observed and modeled
clear-sky irradiance for each hour of the observation period
using:

kc ¼ KSho

KTS
ð8Þ

where, KSho and KTS are the observed total shortwave radiation
incident on a horizontal surface and modeled for the same
surface point and time but under clear-sky conditions respec-
tively. From hourly values of kc, monthly statistics of clear-sky
fraction (θ) and cloud transmittance (β) were calculated. The θ
fraction is the ratio of the hours where kc≈1 to the total number
of daylight hours for each day. Because of small differences
between modeled and observed clear sky values (KTS and KSho),
the criteria for clear skies used was kc=1±0.05. β is the mean
daylight value of kc, when kc<1, in other words, the fraction of
potential clear sky radiation received in cloudy conditions.
Daylight hours were determined by extracting values when solar
zenith angle was less than 80° to avoid cosine response problems
with the instruments at low solar angles.Monthlymean values of
these two ratios are presented in Fig. 4. The clear-sky fraction
shows a clear seasonal trend with largest frequency of cloudiness
occurring in spring and summer months. Cloud transmittance
shows a smaller seasonal range and a less consistent pattern
although, with the exception of June, a small increase in mean
cloud transmission occurs during summer and autumn months.

The two cloud ratios are implemented in the model following
the calculation of diurnal mean shortwave radiation for each
grid point. Daily-integrated radiation values are combined with
the associated θ and β coefficients using:

K̄̄TS ¼ ðK̄̄S þ K̄̄DÞðhþ ð1−hÞbsÞ þ K̄̄ r ð9Þ
where the overbar indicates daily-integrated values and βs is a
modified form of β. Since diffuse radiation is enhanced under
cloudy conditions, β is reduced to account for ψs and increased
to account for the enhanced flux of diffuse radiation received on
shaded slopes, as shown empirically by Kondratyev (1969).
This is approximated by Wilson and Gallant (2000):

bs ¼ bws
Ktsns

Ktss

� �
ð10Þ

where Ktsns is the daily total clear sky shortwave radiation
without shading and Ktss is the total daily clear sky shortwave
radiation with shading.
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Fig. 5. The relation between PAR and K↓ for five different cloudiness index kc
bins (Eq. (10)) observed at 46 m on the MMSF tower, March 1998 to December
2001, where slope is the slope of the least squares regression, r2 is the coefficient
of determination and n is the sample size (number of hours). Note, axes are
scaled differently but maintain the same aspect ratio.
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Since the cloudiness parameterization is explicit over neither
space nor time on shorter intervals than a day, this approach is
only useful for longer-term statistical assessments of the control
of cloudiness and where preferential location for the develop-
ment of clouds is negligible. In this study locational consistency
for cloud formation is thought to be minimal, since both
topography and surface properties within the region are
reasonably homogenous. However, differences in cloud type
occur throughout the year at this site, with summer months
typically producing more spatially heterogeneous cumuliform
cloud while in winter, stratiform cloud is more commonly
observed.

3.3. PAR and APAR

Numerous studies have identified a near constant relation
between K↓ and PAR, regardless of sky conditions (Howell et
al., 1983; Rao, 1984). More detailed investigations have
highlighted differences in the ratio of diffuse beam PAR to
KD (Alados & Alados-Arboledas, 1999; Grant et al., 1996).
Alados et al. (1996) analyzed the relation between PAR and K↓
for a variety of sky condition variables, including clearness
indices, solar zenith angle and dew point temperature. From
this, they derived statistically robust models to estimate this
ratio using multiple regression of sky condition variables.
However, the models were found to weaken only slightly when
only simple clearness indices were used.

In this study, we define the relation between observed K↓ and
PAR for a range of sky conditions using kc (Eq. (8)). kc was
binned into five 0.2 categories between 0 and 1 and the relations
between K↓ and PAR were derived for each (Fig. 5). Overall
relatively small change in the mean ratio occurred as a function
of clearness (0.19), although showed an increase of slope with
clearness, as also found by Alados et al. (1996) for a site in
central Spain. In this case, increase of the slope as a function of
kc followed a logarithmic curve (s(PAR/K↓)=0.089 ln(kc)+1.821)
with an r2 of 0.987. Further, it is clear that, while consistency is
very good for each kc bin, it improves with increasing kc,
showing that increased cloudiness weakens confidence in the
model. Fortunately, this pattern is inverse to the frequency (n)
with which these conditions occur.

In order to assess the effect of spatial variability of radiation
on potential photosynthetic rates, it is necessary to consider the
spatial distribution of leaf density across the model domain. The
spatial distribution of LAI for the study area estimated from
IKONOS imagery (Fig. 1) and provides a basis for calculating
the fraction of PAR that is absorbed (FPAR) using an
exponential function based on Beer's law (Baret & Guyot,
1991):

FPAR ¼ Pl½1−expð−LAIÞ� ð11Þ
where P∞ is the asymptotically limiting value of PAR
absorption for an infinitely thick canopy and was set to 0.94
(Wiegand & Hatfield, 1988). This assumes that the leaves are
randomly distributed. FPAR is then multiplied by modeled
incoming PAR to derive absorbed photosynthetically active
radiation (APAR).



Table 2
Statistical results of the comparison between modeled and observed monthly
mean radiation flux densities at the location of the MMSF tower for 2000 and
2001, where Slope and Intercept are for linear least squares regression, RMSE is
the root mean squared error, subscript S refers to the systematic portion of error
and U to the unsystematic portion and the sample size is 24 (months)

K↓ K↑ L↓ L↑ Q⁎ PAR

All-sky
r2 0.985 0.971 0.882 0.948 0.984 0.988
Slope 0.95 0.97 0.89 0.83 0.90 0.87
Intercept 18.66 2.51 36.2 59.98 15.88 35.73
RMSE 12.88 2.56 14.66 14.62 10.84 21.23
RMSES 10.46 1.82 4.87 10.37 9.05 17.41
RMSEU 7.50 1.81 13.83 10.30 5.96 12.14
Mean Diff (±%) 9.46 10.62 0.04 −0.98 29.9 2.64

Clear-sky
r2 0.985 0.969 0.961 0.935 0.980 0.953
Slope 0.97 0.90 0.97 0.96 0.95 0.96
Intercept 9.7 3.46 8.59 12.97 10.33 18.27
RMSE 10.72 2.87 9.48 12.84 10.30 31.97
RMSES 4.14 1.52 1.86 1.97 5.50 6.14
RMSEU 9.87 2.44 9.30 12.69 8.71 31.38
Mean Diff (±%) 2.02 2.24 0.58 −0.09 7.41 0.93

Units for Intercept, RMSE, RMSES and RMSEU are, for K↓, K↑, L↓, L↑ andQ⁎,
W m−2 and for PAR, μmol m−2 s−1.
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3.4. Net all-wave radiation

Daily values of Q⁎ are calculated using;

Q* ¼ KTS−ð1−aÞKTS þ LA−Lz ð12Þ
where α is the daily albedo, L↑ is upwelling longwave radiation
from observations on the tower and L↓ is calculated from;

LA ¼ LAðobsÞws þ ð1−wsÞLzðobsÞ ð13Þ
where ψs (sky view factor) is used to determine the ratio of L↓
received from sky to surrounding terrain. Therefore, the
variability of longwave components across space is restricted
to variability of ψs. Oliphant et al. (2003) showed that for a very
topographically complex alpine location, spatial variability in
net longwave radiation (L⁎) contributed very little to the overall
spatial variability of Q⁎ and that the greatest contribution to this
variability was due to changes in elevation, followed by
changes in the ratio of L↓ received from sky to surrounding
terrain, as a function of ψs. In the current study, we assume that
elevation has a negligible control on spatial variability since the
range in elevation is <100 m (2% of the range in the study area
of Oliphant et al. (2003) and we have no way of accurately
determining a lapse rate at 46 m across the terrain.

3.5. Model evaluation

Since the model is applied to assess variability of radiation
components where observational data do not exist, we are
inherently restricted from being able to test the model's ability
to predict changes across space in this study. However, Oliphant
et al. (2003) evaluated the performance of the solar radiation
formulations used here (Eqs. (1)–(6)) using observations
collected within an alpine basin and reported a root mean
squared error (RMSE) of 31.7 W m−2 for KTS, 37.8 W m−2 for
KS and 7.2 W m−2 for KD (less than 15% of mean), with r2

values above 0.97.
In this case it is at least possible to compare modeled radiation

values with the single tower observations in order to test the
model's ability to capture the seasonal cycle and effects of
clouds. Simulations of mean monthly radiation components
were conducted with τ, α, θ, and β derived from observational
data collected during 1998 and 1999 and the results were
compared with observational data from 2000 and 2001.
Comparisons include mean monthly values and visually
determined clear sky days within each month. Table 2 shows
that all components are reproduced well by the model through
the seasonal cycle, particularly for clear-sky days, with a small
overestimation by the model. The root mean squared error
(RMSE) is in all cases less than 10% of the mean value. For
clear-sky cases, the dominant portion of RMSE is unsystematic
(RMSEU), suggesting that interannual differences in empirical
inputs are likely to account for larger error than systematic
(RMSES) errors by themodel. For themeanmonthly simulations
which incorporate cloud effects, error is more evenly spread
between RMSEU and RMSES, indicating that inter-annual
differences in cloudiness generated as much error as systematic
weaknesses in capturing the reduction and diffusion of solar
radiation by clouds. Finally, since solar incident angle strongly
influences surface radiation fluxes and varies equally widely
across space and time, it follows that the performance of the
model through time will be indicative of its performance across
space, at least with respect to the role of solar incident angle.

4. Results

This section reports on spatial variability of radiation fluxes
found as a function of topography, cloudiness, seasonality and
surface heterogeneity. For this analysis, simulations included
empirical inputs from data collected from 1998 to 2001.

4.1. Spatial variability of fluxes

Two sets of daily simulations were run for a single generic
year for this site using 5 m resolution grid points, differing only
in cloudiness parameters. In the first, θ and β were
parameterized by the kc analysis (Section 3.2). In the second,
both of these parameters were set to 1, in order to simulate
equivalent clear-sky days. From these two simulation sets,
annual, growing season and monthly mean values of spatial
mean and standard deviation of radiation flux densities were
compiled. Growing season was evaluated from three years of
phenological data, with an average start day of April 9 and stop
day of October 30 and length of 204 days.

The spatial distribution of growing season mean PAR and
annual mean Q⁎are shown in Fig. 6. The upper maps show the
distribution of grid point values for observed cloudiness
parameters, clearly showing the effects of topography, with larger
values found on south-facing slopes. The lower maps show the
difference between equivalent clear sky simulations and observed
sky simulations (clear sky–observed sky). These show the
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enhancement of both spatial mean and variability of fluxes under
clear sky, than observed sky conditions. Similar spatial patterns
exist for both PAR and Q⁎. Frequency histograms of grid point
values for both radiation components under both sky conditions
plotted relative to their spatial means clearly indicates the role of
cloudiness in reducing the variance found in grid points across the
model domain. Peaks in the histograms reflect the large number of
grid points with near-zero slope angle.
The overall spatial variability for both fluxes is considerable.
For Q⁎, the spatial standard deviation for the year under
observed cloudiness is 13.2 W m−2, which is 15% of the mean,
while the overall range is 77.3 W m−2 (86% of mean). As an
annual energy total this integrates to 2775±416.3 MJ m−2 a−1

(with the ±value being one spatial standard deviation) and a
range of 2439 MJ m−2 a−1. In the case of PAR over the growing
season, the spatial standard deviation for observed cloudiness is



0 1 2 3 4 5 6 7

8

10

12

14

16

18

20

22

24
 

2

4

6

8

10

2 4 6 8 10

8

10

12

14

16

18

20

22

24

2

4

6

8

10

0 100 200 300 400 500

8

10

12

14

16

18

20

22

24

 PAR
 Q

DEM resolution (m)

2

4

6

8

10

0 1 2 3 4 5 6 7

8

10

12

14

16

18

20

22

24
 

2

4

6

8

10

2 4 6 8 10

8

10

12

14

16

18

20

22

24

2

4

6

8

10

0 100 200 300 400 500

8

10

12

14

16

18

20

22

24

 PAR
 Q*

DEM resolution (m)

2

4

6

8

10

σ P
A

R
(μ

m
ol

m
-2

s-
1 )

 
σ P

A
R

(μ
m

ol
m

-2
s-

1 )
 

σ P
A

R
(μ

m
ol

m
-2

s-
1 )

 

σ Q
*
(W

 m
-2

) 
σ Q

*
(W

 m
-2

) 
σ Q

*
(W

 m
-2

) 

a) 

b) 

c) 

s (o)

σs (
o)

Fig. 7. Spatial standard deviation of PAR and Q⁎ as a function of a) DEM
resolution, b) spatial standard deviation slope angle and c) spatial mean slope
angle for the simulation of July 15.

332 A. Oliphant et al. / Remote Sensing of Environment 103 (2006) 324–337
23.7 μmol m−2 s−1, 6.4% of the mean, while the range is 93.8
(25% of mean). This integrates over the growing season to 9336±
597.5 mol m−2.

4.2. Role of topography

Spatial variability of solar radiation within localized areas has
been found to be dominated by slope angle and aspect (Dubayah
et al., 1990; Oliphant et al., 2003). Consequently, scales of local
relief strongly impact the magnitude of variability found in a
given region. Since relief is a function of scale, spatial resolution
in topographic models provides a proxy for varying levels of
topographic relief or complexity. Modeling radiation using
different spatial resolutions can be used as a tool to assess spatial
variability of radiation as a function of topographic complexity.
Dubayah et al. (1990) and McKenney et al. (1999) examined the
role of topographic resolution on solar radiation and reported
very little change in spatial mean values but large changes in
spatial variability. Dubayah (1991) showed theoretically that
spatial variability of solar radiation across a topographically
complex area can be scaled by the mean slope angle. To examine
the role of DEM resolution in this study, simulations were run for
a clear-sky summer day using identical meteorological para-
meters, but varying DEM resolution; 5, 20, 50, 100, 200 and
500 m, with grid-point counts of 490,000, 30,625, 4900, 1225,
306 and 49 respectively.

The spatial standard deviation of PAR and Q⁎ as a function
of DEM resolution is presented in Fig. 7a. Spatial variability, in
both cases, follows an exponential decay as DEM resolution
decreases linearly. Spatial mean and standard deviation of slope
angles were also calculated for each DEM resolution and follow
a similar exponential decay pattern. Therefore, spatial variabil-
ity of radiation fluxes in this case shows a strong positive linear
correlation with both spatial mean and standard deviation of
slope angle (Fig. 7b and c respectively). Dubayah (1991)
showed theoretically that this scaling of radiation variance was
linked only with mean slope and that radiation variance is not
changed when variance in slope angle is reduced to zero, as long
as slope aspect is uniformly distributed. The resulting linear
equations for the relation between radiation variability and
mean slope angle ( s̄ ) are σPAR=1.5+6.6 s̄ and σPAR=1.76+
1.9 s̄ , where σ refers to the spatial standard deviation and the
overbar refers to the spatial mean. The r2 value for both
relations was greater than 0.997. The magnitude of decrease in
spatial variability between 5 and 500 m resolution models for
PARσ is 60% and Q⁎σ is 71%. Spatial average radiation fluxes
should remain similar at each resolution, in order to satisfy the
conservation of energy (Dubayah et al., 1990). However, in this
case, a small increase of 2% in the spatial average occurs
between 5 and 500 m resolution for both PAR and Q⁎, probably
due to the reduction of shaded area from surrounding terrain in
smoother topography.

4.3. Role of cloudiness

Comparing model output for observed cloudiness with
equivalent clear-sky conditions (Fig. 6), spatial average PAR is
reduced by 36% with a reduction in spatial standard deviation of
20%. Q⁎ also showed a lower spatial mean for the observed sky
conditions than for equivalent clear-sky conditions (reduction of
17%), as well as a smaller standard deviation (reduction of
36%). The smaller reduction in mean Q⁎ is accounted for by the
larger input of L↓ during cloudy conditions, which partly offsets
the reduction in incident solar radiation. Furthermore, the larger
reduction in spatial variability of Q⁎ than PAR, indicates the
spatial uniformity of L↓ compared with K↓, and the role of
clouds to increase the ratio of KD to KS.

The role of cloudiness on spatial variability was assessed by
simulating a single day in mid summer (July 15) under 25
different cloudiness scenarios using a range of θ and β
coefficients from 0.2 to 1.0, at increments of 0.2 and
determining spatial standard deviation for each run (Fig. 8).



0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1. 0
β

22

18

20

16
14

12

PAR

0. 2 0.3 0. 4 0.5 0. 6 0.7 0. 8 0.9 1. 0
0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1. 0

β

θ

Q*
10

8

6

a

b

Fig. 8. Contour plots of spatial standard deviation of a) PAR (μmol m−2 s−1) and
b) Q⁎ (W m−2) as a function of changes in θ and β modeled for July 15 at this
site.

APAR
(μmol m-2 s-1)

0
200 - 224
225 - 249
250 - 274
275 - 299
300 - 324
325 - 349
350 - 374

0 1 2 km

Fig. 9. Growing season average absorbed photosynthetically active radiation
(APAR) for the MMSF study area. Note break in scale between 0 (roads, lakes
and clearings) and 200 μmol m−2 s−1.

333A. Oliphant et al. / Remote Sensing of Environment 103 (2006) 324–337
For both PAR and Q⁎, the spatial standard deviation reduces
evenly with decreases in both θ and β parameters, indicating
equivalent controls of both the clear-sky fraction and cloud
transmittance. The similarity of pattern in the two plots further
indicates the dominance of solar radiation in controlling the
spatial variability of Q⁎. In both cases, the reduction of direct
beam solar radiation as a function of cloudiness clearly has a
large impact on reducing spatial variability.

4.4. Role of forest heterogeneity

Fig. 9 shows average growing season APAR calculated using
the methods described in Section 3.3. The effect of gaps in the
canopy due to roads, lakes and parking areas can clearly be seen
to affect the spatial distribution of APAR as well as the
topographical effects on PAR as observed in Fig. 6. The spatial
growing season average APAR is 330 μmol m−2 s−1 and the
spatial standard deviation is 41.4 μmol m−2 s−1 which
integrates to 5837±729.7 mol m−2 for the growing season.
The overall fraction of PAR that is absorbed for the study area is
0.89 while the spatial standard deviation of APAR is 53%
higher than PAR. This is an important difference when APAR is
considered as a driver of ecosystem functioning through the light
response curve. For example, using the Schmid et al. (2000) non-
linear relation between PAR and Gross Ecosystem Production
(GEP) applied to a) the spatial growing season average modeled
PAR and b) discretely to each grid point of modeled growing
season average PAR and then spatially averaging the resultant,
produces a difference in GEP of 0.2 t C ha−1 a−1 (1.5%).
Furthermore, it produces a spatial standard deviation of 3.4 t C
ha−1 a−1 across the model domain, which is 25% of the annual
total calculated for a single growing season at the MMSF tower
(Schmid et al., 2000). This simplistic approach does not account
for spatial variability of other environmental constraints such as
turbulence characteristics, vapor pressure deficit, soil moisture
content and temperature but provides a potential spatial
variability of mean GEP as a function of the non-linearity of
the light response curve. It also ignores the fact that the estimates
of GEP are already integrated across the footprint for the flux
measurements. Further work is currently underway to examine
the relation between the footprint integrated flux and the
ecosystem integrated flux in relation to both normalized
difference vegetation index and APAR. Preliminary results
(Schmid et al., 2002) show that the flux footprint is usually large
enough to spatially average LAI induced variability to within
about 2%, but not large enough to average over several
topographical elements that influence the distribution of PAR
or APAR. The increased use of high spatial and spectral
frequency optical observations such as those discussed in
Gamon et al. (this issue) should greatly enhance spatial
interpretation and up-scaling of turbulent flux measurements.

4.5. Seasonal trends in spatial variability

In order to establish the seasonal context for spatial
distribution of radiation components, integrated monthly values
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Fig. 10. Modeled monthly spatial mean radiation flux densities with spatial
standard deviation bars for PAR and Q⁎ under observed sky conditions.

Table 3
Features of semi-variograms calculated from all pairings of 300 point values
from randomly generated locations within the grids of listed variables

Variable Unit Range (m) Sill (unit2) RMSE (unit)

Slope angle degrees 116 43.3 7.1
Slope aspect degrees 145 9538 97.7
LAI m2 m−2 116 0.31 0.53
Growing season PAR μmol m−2 s−1 135 452 21.2
Growing season
PAR (clear)

μmol m−2 s−1 134 873 29.8

APAR μmol m−2 s−1 122 622 24.7
Annual average Q⁎ W m−2 137 163 13.0
Annual average
Q⁎ (clear)

W m−2 137 394 20.1

Lag size=25 m, number of lags=40, Range is the distance (m) at which variance
saturates and Sill is the variance at saturation. RMSE is the root mean square
error of the exponential model fit to each semi-variogram.
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were calculated for observed sky conditions (Fig. 10). The
seasonal trend for the mean and standard deviation are
negatively correlated, with the larger mean values and smaller
variability found during summer than winter months. As a
result, monthly mean spatial standard deviation of Q⁎ ranges
from 6.3 W m−2 in June to 19.2 W m−2 in February. Monthly
spatial standard deviation of PAR ranges from 14.8 μmol m−2

s−1 in June to 43.1 μmol m−2 s−1 in December. Both of these
trends are a function of the seasonal change in solar declination,
as was also found by Dubayah et al. (1990) for clear sky solar
radiation over the Konza Prairie, Kansas as well as increases in
cloudiness in summer (Fig. 4). The implication for annual
budgets is that overall spatial variability is diminished by the
weighting of summertime values. Furthermore, spatial variabil-
ity is smallest when the influence of Q⁎ on evapotranspiration
and PAR on photosynthesis is greatest, during the growing
season. The non-linear relation between PAR and GEP tends to
saturate at higher levels of PAR (e.g. Schmid et al., 2000)
adding a level of spatial smoothing during midday summer
hours.

4.6. Semi-variance analysis

The features of semi-variograms, particularly the range,
provide a useful measure to compare the characteristic scale of
derived radiation fields with the environmental controls that
drive them (Dubayah, 1991). Isotropic semi-variograms were
calculated from all pairings of values extracted from 300
randomly located points within grids of slope angle, slope
aspect, LAI and modeled radiation fields, using the formula-
tions of Oliver (1990). The sample size of randomly generated
points was selected after comparing histograms from a range
of sample sizes with that of the original 5 m grids. A sample
of 300 points was determined to represent the overall
distribution well, while being relatively quick to compute
the semi-variograms (approximately 45,000 pairs). Semi-
variograms from four different sets of 300 randomly generated
points were also compared and model parameters were found
to vary by less than 4%. For this analysis the same 300 points
were used to extract samples from the 5 m resolution grids and
40×25 m lags were used to compute the semi-variogram.
Comparisons were made with semi-variograms using
20×50 m and 100×10 m lags and similar results were
produced. Only the LAI grid produced a significant nugget
which was dominated by microscale variation, indicating
spatial structure at scales smaller than captured here (Oliver,
1990). An exponential model of the form γ(h)=C(l−e−h/r)
was fit to the data, where γ(h)is the semi-variance at a distance
(h), C is the sill variance, and r a distance parameter related to
the range (Dubayah, 1991).

The semi-variograms produced from slope angle and aspect,
LAI, Q⁎, PAR and APAR all showed similar exponential form
and ranges, although the sill variance and RMSE of model fit
varied considerably (Table 3). Slope angle and LAI have the
smallest characteristic scale with slope aspect the largest. The
PAR and Q⁎ model grids produce similar ranges which lie
between the ranges of the topographic attributes (slope angle
and aspect) that principally control them. Since the parameter-
ization of cloud effects is the same across all grid cells in this
study, the scale of radiation variance is not affected, although
there is a strong reduction in the magnitude. The semi-
variogram of APAR clearly reflects both the underlying
topography and vegetation, whereby the range lies between
incident PAR and LAI, and the increase in the sill variance of
APAR from PAR is provided by LAI, as reported earlier (using
standard deviation).

In general, the heterogeneity of several landscape properties
relevant to radiation incidence and absorption represented at
5 m resolution showed similar characteristic scales although
with significantly different variances. The impact of these scales
on radiation distribution is also clearly evident. Furthermore,
the range produced from semi-variograms of radiation fields
increased when input DEM resolution was increased. This
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implies that under-representing the heterogeneity of the
landscape in radiation modeling or simple up-scaling of point
measurements unrealistically diminishes the overall variability
and increases the characteristic distance scale of heterogeneity.
It also implies the need for more detailed spatial investigations
of heterogeneity of landscape properties, including remotely
sensed estimates of biophysical functioning.

5. Conclusions

Potential spatial variability of PAR and Q⁎ were investigated
for a hilly mid-latitude forested region in southern Indiana, in
order to identify the relative controls of local scale topography,
forest heterogeneity and atmospheric conditions. Simulations
were run for observed cloudiness as well as the equivalent clear-
sky conditions. Monthly mean model output compared well with
observed point data with differences typically less than 10% and
clear-sky days were simulatedmore accurately than cloudy days,
although this was restricted to a single point in space.

Spatial variability of radiation was found to be very sensitive
to topographic relief, while spatial mean changed only slightly.
This was due to a reduction in mean slope angle, and shows that
reduction in model resolution may not adversely affect spatial
aggregate values, but will significantly underestimate the spatial
variability, although the topographic component can be scaled
linearly by mean slope. Clouds reduced both spatial mean and
standard deviation of radiation components significantly, with
the spatial mean Q⁎ reduction being less than PAR, and the
reduction in the standard deviation greater. The spatial
variability of APAR was 53% higher than PAR indicating the
importance of variance in FPAR provided by heterogeneity of
the leaf area index. Strong seasonal patterns in both spatial
mean and standard deviation were evident, with summer having
the largest mean and smallest variability. Seasonal patterns of
spatial variability were driven by changing geometric relations,
optical transmissivity and cloud conditions.

Additional local-scale heterogeneity of soil and atmospher-
ic characteristics not assessed in this study would provide a
more complete picture of spatial variability of ecosystem and
functioning and climate. Results also imply that finer spatial
resolution LAI data used in this study is required to more
accurately characterize the spatial scales of vegetation. Further
work is also required to evaluate this potential variability from
observations and add vertical integration of APAR for deep
canopies. Nevertheless, topographic radiation models com-
bined with satellite imagery and empirical relations (both
location dependent and independent) can yield valuable
information on the spatial distribution and variance of
radiation components. The magnitude and patterns of radiation
variability at this scale are important for both upscaling of
point flux tower or optical sampling data as well as
downscaling of regional or larger models or assessing sub-
pixel variability. These findings also imply the need for more
detailed investigations of heterogeneity of landscape properties
to better understand spatial variability of ecosystem function-
ing, particularly through the use of remotely sensed biophy-
sical variables.
List of Symbols and Abbreviations
A Solar azimuth angle (degrees)
As Slope azimuth angle (degrees)
APAR Absorbed photosynthetically active radiation (μmol

m−2 s−1)
α Albedo (0–1 ratio)
β Ratio of radiation transmittance through clouds (0–1

ratio)
βs Modified form of β (0–1 ratio)
FPAR Fraction of absorbed photosynthetically active radia-

tion (0–1 ratio)
γ Circumsolar coefficient (0–1 ratio)
GEP Gross ecological production (μmol m−2 s−1)
i Angle of solar beam relative to nadir (degrees)
K Shortwave (solar) radiation (W m−2)
kc Cloud index (0–1 ratio)
KD Diffuse beam shortwave radiation (W m−2)
KDc Circumsolar fraction of diffuse beam shortwave

radiation (W m−2)
KDi Isotropic fraction of diffuse beam shortwave radiation

(W m−2)
Koh Shortwave irradiance on a surface-parallel plane (W

m−2)
Kr Incident shortwave radiation reflected from terrain (W

m−2)
KS Direct beam shortwave radiation on a sloping surface

(W m−2)
KSh Direct beam shortwave radiation on a horizontal

surface (W m−2)
KSho Observed radiation on a horizontal surface (W m−2)
KTS Total shortwave radiation for clear skies (W m−2)
Ktsns Daily total clear sky shortwave radiation without

shading (W m−2)
Ktss Daily clear sky shortwave radiation with shading (W

m−2)
L Longwave (thermal infrared) radiation (W m−2)
LAI Leaf area index (m2 m−2)
m Airmass (radiative pathlength relative to nadir) (1–∝

ratio)
P∞ Asymptotically limiting value of PAR absorption (0–1

ratio)
PAR Photosynthetically active radiation (μmol m−2 s−1)
q Specific humidity (g kg−1)
Q⁎ Net all-wave radiation (W m−2)
s Slope angle (degrees)
τ Optical transmissivity (at nadir) (0–1 ratio)
θ Fraction of clear sky hours (0–1 ratio)
ψs Sky view factor (0–1 ratio)
z Solar zenith angle (degrees)
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