
SG5035 Environmental Monitoring R tutorial 2

13 October 2009 1 v1.1

Tutorial 2: manipulating data classes

In this tutorial we will work with the data you collected in last week’s laboratory. This should give you a

good example of the difficulties encountered when using outputs from a datalogger. You should already

have your own copy of the files but if needed the dataset used here is available from the monitoring

webpage. It corresponds to the data collected from the CR3000 data logger at a rate of one sample per

minute (Pract2_CR3000_Table1.dat).

� As for Tutorial 1, open a new script (file/new script) and start by cleaning the workspace:

R tutorial number 2, 13 Oct 2009
start with a clean work space
rm(list=ls())

� We then need to read in the data using the read.table command. Remember that when

invoking this command the path to your data file location has to be specified. This is often a

source of problems and you need to be careful about several common mistakes:

o Paths in R are specified using a “/” and not a “\” like in Windows.

o Absolute paths (i.e., starting from the drive location) are always better to use.

o In the Master’s computer room extensions to files (such as .txt) are put by default

depending and the application used and they are hidden (see R FAQs page on the web).

Therefore if you explicitly specify the extension you might end up with it being written

twice (e.g. file.txt.txt) without realizing it. This will of course cause a mismatch between

what you ask R to look for and what the file is actually called.

One important difference with Tutorial 1 is that the columns in the data file are delimited by

comas (“,”) rather than just a blank. This needs to be added as an input to the read.table

command, along with the number of lines to skip (4 lines of header here).

read data from the 1 minute file and store into a table
note that the file has 4 lines of header which we skip
and that columns are separated by comas (",")
TABLE <-
read.table("C:/MEC/R_tutorial/Tutorial_2/Pract2_CR3000_Table1.dat
",skip=4,sep=",")

To check that your path has been found by R you should save your script and source it at this point. You

can also copy & paste the last line into the console. If the following message appears in blue you have

not specified the path correctly (in this example it should be Tutorial_2 and not Tutorial2)

Error in file(file, "r") : cannot open the connection

In addition: Warning message:

In file(file, "r") :

 cannot open file 'C:/MEC/R_tutorial/Tutorial2/Pract2_CR3000_Table1.dat': No such file or directory

If no error message appears you have successfully loaded your data into the array called TABLE. By

typing TABLE into the console you should see all your data being printed (100 samples). You will notice

that separation was made with regards to the comas and not the blank spaces in the file and therefore

the whole timestamp appears in one single column (column 1).

SG5035 Environmental Monitoring R tutorial 2

13 October 2009 2 v1.1

The advantage of the decimal time notation introduced in Tutorial 1 should now appear more obvious

when looking at the time stamp provided here: how would you for instance plot the evolution of the

temperature as a function of this timestamp? You could use the minutes to start but then you quickly

face problems when changing hour.

� We will therefore compute the decimal time from the information in this timestamp. First we

need to separate the different components and store them in different vectors. A convenient

way to do so is to convert the timestamp to a character string
1
 and then select only the

substrings we actually need. The command to convert to a character string is as.character and

the one to select a substring is substr. The use of as.character is straight forward. substr expects

three arguments: the name of the original character string, the index of the element from which

to start the substring and the one where to stop.

Convert the timestamp (first column) into a character string
TIMESTAMP <- as.character(TABLE[,1])

Check the result
print(TIMESTAMP[1])

Now select only the substrings we want
YEAR <- substr(TIMESTAMP,1,4)
MONTH <- substr(TIMESTAMP,6,7)
DAY <- substr(TIMESTAMP,9,10)
HOUR <- substr(TIMESTAMP,12,13)
MINUTE <- substr(TIMESTAMP,15,16)
SECOND <- substr(TIMESTAMP,18,19)

You can check the success of the commands by printing any of the vectors created.

� All these samples were taken on the same day (DOY 280) so all decimal times will be between

280 and 281. To compute the decimal value we need to convert the character strings back into

numbers which is done with the as.real command
2
. The following line then gives the value of

the decimal time:

Compute decimal time from hour and minute vectors
DOY<-280

 DECTIME <- DOY+as.real(HOUR)/24+as.real(MINUTE)/(24*60)

Note that for a longer dataset you would not be able to fix the DOY to 280 like it is done here.

Instead you would need to convert the YEAR, MONTH and DAY information using both the

as.Date and format commands. Here is an example of how the same sequence of commands

can be done more generically. First we create a DATE character string by pasting the YEAR,

MONTH and DAY strings together (“20091007”) and then we convert it to the class know by R as

a date using the as.Date command. Note that to avoid any misinterpretation of the date we

explicitelly define the format it is to be read in (“%Y%m%d”). The format command finally

enables you to switch from one date format to another, and here we specify that we want the

Day of Year notation (“%j”):

1
 Each object in R belongs to a class (character, real, integer, etc ...). Have a look at section 2 of the “An introduction

to R” manual on the R webpage for a complete definition (http://www.r-project.org/ and select Manuals).
2
 Note that all commands needed to convert from one class to another start in the same way (as.character, as.real,

as.integer, etc...). You can also use the more generic command as which requires the classes as arguments (see ?as).

SG5035 Environmental Monitoring R tutorial 2

13 October 2009 3 v1.1

DATE<-paste(YEAR,MONTH,DAY,sep="")
DOY <- format(as.Date(DATE,"%Y%m%d"),"%j")
DECTIME <- DOY+as.real(HOUR)/24+as.real(MINUTE)/(24*60)

� We can now store the temperature data (column 5) and plot its evolution as a function of the

decimal time. Horizontal lines corresponding to the mean temperature value during the period

as well as the mean +/- one standard deviation are also plotted using the abline command.

#Store temperature data
TEMP <- TABLE[,5]

#Plot temperature evolution as a function of the decimal time
plot(DECTIME,TEMP,type="b",xlab="Time (d)",ylab="Temperature
(C)")

#add lines for the mean and the mean +/- sd values
abline(h=mean(TEMP),col="red")
abline(h=mean(TEMP)+sd(TEMP),lty="dashed",col="blue")
abline(h=mean(TEMP)-sd(TEMP),lty="dashed",col="blue")

add legends
legend(min(DECTIME),max(TEMP),lty="solid",col="red" ,"Mean
value",bty="n")
legend(min(DECTIME),max(TEMP)-0.02,lty="dashed",col="blue","Mean
+/- one standard deviation ",bty="n")

� Now we want to identify the time at which the minimum temperature occured. The best way to

do that in R is via the very powerful command which. When applied to a vector or an array this

commands returns the indexes satisfying a given condition. In this case we ask for the index of

the element corresponding to the minimum temperature value. Note that the condition is

specified using two equal signs. This is the convention when using a TRUE/FALSE type of

condition and the omission of the second “=” is a common source of error.

find the index which corresponds to the minimum temp
INDEX_OF_MIN <- which(TEMP==min(TEMP))

It is then possible to retrieve other information related to this index, such as the decimal time

(or the corresponding minute):

get corresponding decimal time
TIME_OF_MIN <-DECTIME[INDEX_OF_MIN]

� You might want to pass this data to someone else or just keep a track of the decimal time for

yourself without having to re-run the script. We will therefore write the decimal time and

temperature data to a new text file. This is done with the write command of R which also

requires the path to the data file you want to write to. Note that this file does not need to

already exist, R will create it if needed. An important argument to this command is the

“append=” switch which determines whether to append the data to the file or overwrite existing

one.

SG5035 Environmental Monitoring R tutorial 2

13 October 2009 4 v1.1

In this case we start by writing the file header (“%Dectime Temperature”), overwriting any

existing line and then we append the actual data. The paste command is needed to generate the

lines to write out. This is also how you can specify the column separator (“sep=”).

Write out the data to a text file
First write header info
write("%Dectime
Temperature","C:/MEC/R_tutorial/Tutorial_2/Temp_Dectime.txt",
append=FALSE)
#Then write the actual data lines
write(pasteDECTIME,TEMP,sep="
"),"C:/MEC/R_tutorial/Tutorial_2/Temp_Dectime.txt",append=TRUE)

Upon completion you should have a new file in the specified directory. By scanning the file you

will see that the dectime data has more digit that we really need. You can force R to round the

values before to write them out using the following command instead of the previous one:

write(paste(round(DECTIME,4),TEMP,sep="
"),"C:/MEC/R_tutorial/Tutorial_2/Temp_Dectime.txt",append=TRUE)

Any suggestions or revisions to this document please email: thomas.loridan@kcl.ac.uk

