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1. Consider an implicit linear multistep method

yn+2 − yn = h
2∑

k=0

βkfn+k

where h is the step size.

(a) Find the values of the coefficients βk, k = 0, 1, 2, for the method to
approximate the solution of the differential equation y′ = f(t, y) with
the highest possible order of consistency and give the error constant
for the obtained method.

[10 marks]

(b) Deduce whether the obtained highest order method is convergent.

[5 marks]

(c) Find the interval of absolute stability of this method with the highest
order, if there is any.

[10 marks]

2. Consider the s-stage Runge-Kutta (RK) methods

yn+1 = yn + h
s∑

i=1

bif(tn + cih, ξi),

ξi = yn + h
s∑

j=1

ai,jf(tn + cjh, ξj), i = 1, . . . , s

where {ai,j}, {bi} and {ci}, i, j = 1, . . . , s, are constants, for
approximating the solution to the differential equation y′ = f(t, y).

(a) Show that for the s-stage RK method to be consistent of order p ≥ 1
when applied to approximate the solution of the initial value problem y′(t) = 1, t > 0

y(0) = 0,
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the coefficients must satisfy
s∑

i=1

bi = 1 and ci =
s∑
j]1

ai,j, i = 1, . . . , s

[8 marks]

(b) Show that the RK method with the Butcher array

0 0 0
1 a a

b b

is equivalent to the Trapezoidal Rule.

[6 marks]

(c) Consider a 2-stage explicit RK method

yn+1 = yn + h

(
2

5
f(tn, yn) + θf (tn + ah, yn + ahf(tn, yn))

)
.

(i) Find the values of θ and a such that this method is consistent of
order p = 2.

[5 marks]
(ii) Find the range of step size for the order 2 method obtained in (i)

to be absolutely stable when applied to integrate the linear system
of order differential equations

u′(t) = −9u(t)− 2v(t)

v′(t) = 4u(t)− 3v(t).

Note that you can use the interval of absolute stability of 2-stage
Runge-Kutta method without proof.

[6 marks]

3. (a) Discretise the boundary value problem (BVP) −y
′′(x) + (3 + 5 sin(πx))y′(x) + exy(x) = 0, x ∈ (0, 1)

y(0) = 0, y(1) = 1
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using a three-term finite difference approximation on a uniform mesh
of step size h = 1

N and give the coefficient matrix of the difference
equation.

[7 marks]

(b) Find the minimum number of subintervals N which is a sufficient
condition for the coefficient matrix in (a) to be non-singular.

[8 marks]

(c) Use the maximum principle with auxiliary function g(x) = x
3 to show

that the error ei = y(xi)− yi between the true solution and the finite
difference approximation is O(h2).
Note that you can use without proof the upper bound of the truncation
error Tj ≤ 1

12Mh2, j = 0, 1, . . . , N, with M a positive constant.

[10 marks]

4. Consider the one-step numerical method

yn+1 = yn + h [(1− θ)fn + θfn+1] , θ ∈ [0, 1]

for approximating the solution of the ordinary differential equation
y′(t) = f(t, y(t)).

(a) Find whether the method with θ = 0 can approximate the solution
y(t) =

(
3t
4

)4/3
of the initial value problem (IVP)

y′(t) = y1/4, y(0) = 0.

Relate your finding to the well-posedness condition of the IVP.

[7 marks]

(b) Find the region of absolute stability for the methods with θ ∈ [0, 1/2).

[10 marks]
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(c) Consider applying the method of θ = 1/2 to solve the initial value
problem

y′(t) = 1 + y2(t), y(0) = 0.

Show that it is necessary to solve a quadratic equation in order to
determine yn+1 from yn and that an appropriate root can be identified
by making use of the property that yn+1 → yn as h→ 0.

[8 marks]

[End of Question Paper]
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