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1. Suppose that the life time X has density p given by

p(x) = c(a− x), for 0 ≤ x ≤ a

and p(x) = 0 else, where a is a positive constant.

Calculate c, the mean and variance of the life time.

[6 marks]

2. Let X1, X2 be independent exponentially distributed random variables
with parameters λ1, λ2 so that

P(Xi > t) = exp [−λit], for t ≥ 0, i ∈ {1, 2} .

Define N = 1 if X1 < X2, otherwise N = 2.

(a) Let U = min(X1, X2). Show that P(U > t) = exp [−(λ1 + λ2)t] for
t > 0.

[3 marks]

(b) Show that P(N = 1) = λ1/(λ1 + λ2).

[4 marks]

(c) Show that P(W > t|N = 1) = exp [−λ2t] where W = |X1 −X2|.

[5 marks]

3. Let Wt be a standard one dimensional Wiener process.

(a) Define the stochastic process Zt by Zt = Wt − tW1, t ∈ [0, 1]. Show
that Zt is a Gaussian process with

E[Zt] = 0, E[ZtZs] = min(t, s)− ts.
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[5 marks]

(b) Calculate the mean E[Yt] and the correlation function
C(t, s) = E[YtYs] of the process

Yt =

∫ t

0

Wsds

[7 marks]

4. Two cells, A and B, contain together N molecules of gas. At each time
instant a molecule is chosen at random from the N , and if the chosen
molecule is from cell A it is put into cell B, and if it is from cell B it is put
into cell A.

(a) Find the one-step transition probabilities of this Markov chain, where
the random variable Xn denotes the number of molecules in cell A at
time instant n.

[5 marks]

(b) Define the generating function Gn(k) =
∑N

j=0 P(Xn = j)eijk. Show
that for n→∞ this function satisfies

0 = (eik − 1)G∞(k) +
1

iN
(e−ik − eik)G′∞(k)

where G′∞(k) =
d
dkG∞(k).

[10 marks]

(c) Derive the Gaussian approximation by solving the equation for G∞ up
to second order in k for k → 0. Find the corresponding stationary
values for the mean and variance.

[5 marks]

[End of Question Paper]
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