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1. a) Show how to derive samples from the density f(x) defined on [0,  

 

f (x) =
1

1+ x( )
2

 
 

using the transformation method, also called probability integral 
transform method, starting from samples from the uniform 
distribution U(0,1].  

        [10 marks] 
  

b) A very simple model of weather prediction, taking into account 
uncertainties in the system, is the Markov chain with the following 
transition matrix from one day to the next: 
 

P =
0.8 p

q 0.4
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in which P11 denotes the probability that a sunny day is followed by 
another sunny day, P22 denotes the probability that a rainy day is 
followed by a rainy day, P12=p is the probability that a sunny day is 
followed by a rainy day etc. 
 
Find the values for p and q using the fact that P is a stochastic 
matrix. 

 [5 marks] 
   

c) Assume it is sunny on day 0. What is the probability it is sunny at 
day 2?  

[5 marks] 
  

d) Show that the Markov chain is ergodic. 
[10 marks] 

  
 
 
 
MTMDO3 



Page 3 
 
e) Find the invariant distribution p(x). What does this mean in terms 
of sunny and rainy days? 

[10 marks] 
  

f) Calculate (PT )2  for n>1, with P defined by  

 

P =
0.8 p

q a
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What should the value of a be to ensure that every n-day forecast is 
the same as the one-day forecast?  

[10 marks] 
  

 
 
2. a) Explain the Metropolis-Hastings algorithm. 

[10 marks] 
  

 
b) Explain why it is important to use a good proposal density in 
Metropolis-Hastings. What is the ideal choice for the proposal 
density and why is that choice not practical? 

[10 marks] 
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c) In Adaptive Metropolis-Hastings the proposal density is chosen 
adaptively using past samples as follows: 
 

q(z | xn-1) = N(xn-1,Q), 

 
with covariance  

Q =
1

K -1
xk - x( )

k=0

K

å xk - x( )
T

 

 
and  

x =
1

K
xk

k=0

K

å . 

 
 
Do you think this will be effective? Why? Would you include the 
burn-in samples? Why? 

[20 marks] 
 
d) Assume that the posterior pdf is shaped is in the figure below. 
Explain why Adaptive Metropolis-Hastings will not be efficient. Which 
MCMC method would you use and why? 

[10 marks] 
 
 
 
 
 
 
 

 
 
Figure 1 Contour plot of the posterior pdf.  
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3. Suppose we want to calculate the integral 

   

I = f (x)dx
-10

10

ò
 

in which f (x) = e|x| 

 

a)  Show how this integral can be evaluated by drawing samples 

from the uniform density U[-10,10]. Will this be an efficient method to 

calculate the integral? Explain your answer. 

[10 marks] 
  

 
b) Argue that using the proposal density  
 

   

q(x) =
1

1+ x 2
 

 
to generate the samples will be even less efficient. Which proposal 
density would you use? 

[10 marks] 
 

 c) Explain why standard Particle Filters are not efficient when the 
likelihood is much more peaked than the prior, and explain how a 
proposal density can be used to make Particle Filters more efficient. 
 

[10 marks] 
  
 d)  Give one argument why the number of independent observations 

is an important factor in the potential degeneracy of particle filters. 
Assume that the observation errors are Gaussian distributed. 
 

[10 marks] 
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e) Assume that the number of independent observations is large, 
and we use a 4DVar on each particle sequentially in the particle 
filter. Explain which cost function each 4DVar should minimize. 
 

[10 marks] 
  
 
 

[End of Question paper] 
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