Adept C++ Software Library: User Guide

Robin J. Hogan
European Centre for Medium Range Weather Forecasts, Reading, UK
and School of Mathematical, Physical and Computational Sciences, University of Reading, UK,

Document version 2.1.3 (February 2024) applicable to Adept version 2.1.3

This document is copyright © Robin J. Hogan 2013-2024. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation. This license may be found at http://www.gnu.org/copyleft/fdl.html. As an exception, no
copyright is asserted for the code fragments in this document (indicated in the text with a light-grey background); these code

fragments are hereby placed in the Public Domain, and accordingly may be copied, modified and distributed without restriction.
If you have any queries about Adept that are not answered by this document or by the information on the Adept web site

(http://www.met .reading.ac.uk/clouds/adept/) then please email me at r . j.hogan@ecmwf . int.

http://www.gnu.org/copyleft/fdl.html
http://www.met.reading.ac.uk/clouds/adept/
mailto:r.j.hogan@ecmwf.int

Contents

1 Introduction 3
L1 WRAE IS AEPE? ..ttt ettt ettt st b et e bt e h et s bt et e s bt e st et e ebe et e sbe et e s beebt et e ebeenee 3
1.2 Installing Adept and compiling your cOde t0 USE itcccueruerrierriienieiieeieenite st eiee st ereebeesenesaeeaeees 3

1.2.1 Unix-liKe pPIatfOrmSco.eeuiieieieitieeet ettt sttt e ae et s sbeest et ene e 4
1.2.2 Non-Unix platforms, and compiling Adept applications without linking to an external library 6

2 Using Adept for automatic differentiation 7
2.1 TIEFOAUCTION. ..ttt ettt b et st e e bt s et e et e bt e sab e et e e bt e sbaeeabe e bt e sbeeeaseeabeenbeesaseeabeenbs 7
2.2 COAE PIEPATALION. ..c..eeutiruieiiriteienteeiteteett et steetesteebt et e e bt et e st e eate s bt sbe et esbeeat e bt eute bt sbeesbesbeestenteebeentesbeenees 8
2.3 Applying reverse-mode differeNtiation..........ceoierierriieniierieeieeite ettt sttt 9

2.3.1 Set-up stack to record derivative infOrmationccoeeveeverieieininenenieieeeeneseeeeeeneenenes 9
2.3.2 Initialize independent variables and Start TECOTAINGcceeveeriirriierierieeieertenee et 10
2.3.3 Perform calculations to be differentiated............cocererieririeniiiiieneeeee e 10
2.3.4 Perform reverse-mode differentiationc.ccoceeeuereeieniniieninienenenreeeeete e 11
2.3.5 Extract the final Sradientsccceoeiieiiriiiene ettt 11
2.4 Computing JACODIAN MALTICES ...eeuveeveeriierieeieeriieeteeteertteste et esteesiteebeebeessaesseenbeesssesssesseesseesssesnseenses 11
2.5 Real-world usage: interfacing Adept to a third-party minimization librarycccccocevevinienincnne. 13
2.6 Calling an algorithm with and without automatic differentiation from the same program................... 15
2.6.1 FUNCHON LEMPIALESveeiieiiiiiieriieeite ettt ettt ettt et e st e e bt e sbtesat e sabe e bt essbesabeesbeesanesaneen 16
2.6.2 Pausable TECOTAINGcccuiruiiiiriiitieieieeteet ettt ettt sttt b sttt ebe et bt e e b et et ebe e 16
2.6.3 Multiple object files per SOUICE file........coieieriirieiiiriiiiiieieie e 16
2.7 Interfacing with software containing hand-coded Jacobians...........cccceeeeuerieienineineneeeeecee e 18
2.8 Member functions of the STaCKk ClaSScciriiririiiiririee ettt 19
2.9 Member functions of the adoUbD1e ODJECTcc.ciuiiiiiiiiiiiiieeccceec e 22

3 Using Adept’s array functionality 24
3.1 INEEOAUCTION. t.eteutitteitete ettt ettt ettt sttt s b e ea et e bt et s bt et e s be s bt et e e bt ea b e bt eate bt sbeenbeabeestenbeebeeneesbeenean 24
3.2 THE AT TAY CLASS wrtiieiiieiiieeeiieeeite ettt e et e ettt e et e e et e e e et e e e baeessteeeeasseesasaeeasseeeassasesseeassseeanssesassesensseaas 25
3.3 Operators and mathematical fUNCLIONScccooiiiiiiiiiiiiiicc e e 28
34 ATTAY SHCINE oeenteiieiieie ettt bttt b ettt ettt s b et e e bt e st et e bt e et s bt et e s bt e st et e ebe et e sbeeneen 28
3.5 Passing arrays to and from fUNCHONSc.evrviiriieriieiiieiie ettt sttt st as 30
3.6 Array 1€dUCHON OPETALIONS ..eevreeurerteenirerierteertteeteeteenheesateeteesbeessteeateebeesbaeeabeebeesbeeeasesaseenbeesasesareennes 32
3.7 Array eXpansion OPEIATIONSc..cc.eeverterteertirieerterteritenteeteetesteestestesbeetesbeestenteesteaesbeessesbeessenseeseesesseeneen 32
3.8 CONAIIONA] OPETALIONSeeiutieiiieiteetteniteeteettestte st et esbee st e e bt esbeesabeebe e beesbaeeabeeabeesbeesasesaseensaesasesaseenses 33
3.9 FIX@A-SIZE QITAYS c.cvevirerenteiieiieie ettt ettt ettt sttt et ebe ettt a et et b e bt s bt ettt e st ebe et e b e e e eneeuenaesae 33
3.10 Special SQUATE MALTICES. ...eevrerureeieerieerteeteeeteerteesteesteesteesteeseesseessseeseesseesssessseeseesssesssesnseesseessessseeses 34
31T Matrix MUIHPIICATION ...eueeiitieriieeieeteesit ettt sttt ettt e et e st e et e e bt e s bt e et e e bt e sbteeabesabeesbeesasesnbeenbes 35
312 LANEAT QIZEDIA ...ttt et b ettt et a e s bbbt st et eae et e eaeenean 36
T B T 651155 § 0T) o1 1) DO OO PRRPRRPR 37
3.14 Bounds and alias ChECKING......c..cceoiiiiiiiiiiiiieeeeeeece et 38
3.15 Automatic differentiation capabilities SPECIfIC 0 AITAYSecveeeeruerierieniieienieeierie ettt eaees 39
3,16 ATTay thread SATELY ..cc.vieciieiiiiiiieieeieect ettt ettt s e et e b e st e et e et esha e et e enbeenbaesabeenbeenbes 39
3.17 Writing an array t0 @ SLIEAIM ...c..cueeuueuieiieteeieete et ettt et s et st e e s e e e ae st esaesse e s et e eneenneeneennes 39
3.18 FOrtran interOPEIabIliLYcoeeruertieiertieiiete ettt ettt ettt e b ettt et e e s bt et e s b et e b ebeeneesbeenees 40

3.18.1 Passing arrays from C++/Adept t0 FOTtranc.covieriiriiiiiinieniieeeeesee et 40
3.18.2 Passing arrays from Fortran to0 CH+/AdePt........coceririeniiiineniieieeetenc e 41

4 Using Adept’s optimization functionality 43
4.1 BACKZIOUNG....uiiiiiiiiiiiiecie ettt ettt ettt e b e sttt e st e e s et e s e be e s bt e satesate e bt e beesabeenbeenbeesbeesnbeenseennes 43
4.2 APt INEEITACEvieveeeiecie ettt ettt tte e te et e e bt e s aeeae e beessaessseesbeessaesssessseesseesseessseensaenseesssesssensseenses 44

CONTENTS 2

4.3 Other member functions of the Minimizer ClaSS.....cciiiririiiiiririee e 46
4.4 Return status fOr MINIMIZAIONcecueiuirtieiiietieierte ettt ettt et et e st e eesbeeatesteese e besaeeeesbeesseneeeaeenes 47
5 General considerations 49
5.1 Setting and checking the global CONfIGUIAION........cccuiiriiiriieiiieiie et s 49
5.2 Parallelizing Adept PrOZIAMS........ccc.eeuieieriiruieiienieeieteeit ettt et re st en et eaeeae st ene s e eane st eneesnesneennes 49
5.3 The fast eXponential fUNCLIONccueiiiiiriiiieie ettt ettt b e te st ebe e e sbeenees 50
5.4 Tips for the Dest PETTOTTNANCEeevviiiiieiieiieiie ettt sttt ettt e s b e st e ebeesbaessseenseennes 50
5.5 Exceptions thrown by the Adept lIDTaryccccocooviiiiiiiiiiiiceeee e 51
5.5.1 GENETAl EXCEPLIOMNS ..c..eeutitiriterieriietenteeitent ettt ettt ettt ebte bt sbe et e s beses et e ebeentesbeenaesbesbnenbeebeenee 52

5.5.2 Automatic-differentiation EXCEPLIONScccevuirierieriiriieriieieie et et et 52

5.5.3 AITAY CXCEPLIOMS .euvertieiiiiiriteieritetent ettt ettt sttt et ettt e b et sbe e te s bt sab et e ebeentesbeemae s bt ebnenbeebeenee 53

5.6 Configuring the behaviour Of Adeprcoceiiiiiiiiiiiiiieieeeee ettt s 53
5.6.1 Modifications not requiring a library reCOmpilecceeeeeenirieneniniienienieneneeeeeeeeeenee 53

5.6.2 Modifications requiring a library r€COMPILEceeeeriiiiiiirieniiiieeteeie et 55

5.7 Frequently asked qUESTIONScc.eiuiiierieieie ettt ettt sb ettt et sae st e b s b et e b ebeeneeeeeeneas 55
5.8 Copyright and license fOr Adept SOTEWATEcc.eevvueeeiieriieiiieieeie ettt ettt st esae e ees 57

Chapter 1

Introduction

1.1 What is Adept?

Adept (Automatic Differentiation using Expression Templates) is a C++ software library that enables algorithms
to be automatically differentiated. Since version 2.0" it also provides array classes that can be used in array
expressions. These two capabilities are fully integrated such that array expressions can be differentiated efficiently,
but the array capability may also be used on its own.

The automatic-differentiation capability uses an operator overloading approach, so very little code modification
is required. Differentiation can be performed in forward mode (the “tangent-linear” computation), reverse mode
(the “adjoint” computation), or the full Jacobian matrix can be computed. This behaviour is common to several
other libraries, namely ADOL-C (Griewank et al., 1996), CppAD (Bell, 2007) and Sacado (Gay, 2005), but the use
of expression templates, an efficient way to store the differential information and several other optimizations mean
that reverse-mode differentiation tends to be significantly faster and use less memory. In fact, Adept is also usually
only a little slower than an adjoint code you might write by hand, but immeasurably faster in terms of user time;
adjoint coding is very time consuming and error-prone. For technical details of how it works, benchmark results
and further discussion of the factors affecting its speed when applied to a particular code, see Hogan (2014).

Expression templates also underpin a number of libraries that provide the capability to perform mathematical
operations on entire arrays (Veldhuizen, 1995). Unfortunately, if Adept version 1.x and such an array library are
used together, then the speed advantages of expression templates are lost, if indeed the libraries work together at
all. Since version 2.0, Adept provides array classes that overcome this problem: its automatic differentiation and
array capabilities are underpinned by a single unified expression template framework so that array expressions
may be differentiated very efficiently. However, it should be stressed that Adept is useful as a fully functional array
library even if you don’t wish to use its automatic differentiation capability. Adept uses BLAS and LAPACK for
matrix operations.

This user guide describes how to apply the Adept software library to your code, and many of the examples map
on to those in the test directory of the Adept software package. Section 1.2 outlines how to install Adept on your
system and how to compile your own code to use it. Chapter 2 describes how to use the automatic differentiation
capability of the library, chapter 3 its array capability and chapter 4 its optimization capability. Chapter 5 then
describes general aspects such as exception handling, configuration options and license terms.

1.2 Installing Adept and compiling your code to use it

Adept should work with any C++98 compliant compiler, but uses some C++11 features if compiled with support
for this later standard. Most of the testing has been on Linux with the GNU C++ compiler, but it also compiles on
Linux with the Clang and Intel compilers and on Windows with the Microsoft compiler. The code is built with the
help of a configure shell script generated by GNU autotools. If you are on a non-Unix system (e.g. Windows)
and cannot use shell scripts, see section 1.2.2.

*Note that the version 1.9.x series served as beta releases for version 2.0 of Adept.

3

1.2. Installing Adept and compiling your code to use it 4

1.2.1 Unix-like platforms
On a Unix-like system, do the following:

1. Install the BLAS library to enable matrix multiplication. For the best performance in matrix operations it is
recommended that you install an optimized package such as OpenBLAS or ATLAS*. If you have multiple
BLAS libraries available on your system you can specify the one you want by calling the configure script
below with —-with-blas=openblas or similar. If Adept is compiled without BLAS support then matrix
multiplication will fail at run time.

2. Optionally install the LAPACK library, necessary for matrix inversion and solving linear systems of equa-
tions. If you do not install this then Adept will still compile but the functions inv and solve will fail at run
time. Note that LAPACK relies on the underlying BLAS library for its speed.

3. The test and benchmarking programs can make use of additional libraries if available. If you also install any
of the automatic differentiation tools ADOL-C, CppAD and/or Sacado then the benchmarking test program
can compare them to Adept. One of the test programs uses the minimization algorithm from the GNU
Scientific Library, if available, so you may wish to install that too.

4. Unpack the package (tar xvfz adept-2.x.tar.gz on Linux) and cd to the directory adept-2.x.

5. Configure the build using the configure script. The most basic method is to just run

./configure

More likely you will wish to compile with a higher level of optimization than the default (which is —02),
achieved by setting the environment variable CXXFLAGS. You may also wish to specify the root directory of
the installation, say to /foo. These may be done by running instead

./configure CXXFLAGS="-g -03" —-prefix=/foo

The —-g option to CXXFLAGS ensures debugging information is stored. If you use the GNU compiler
then consider the —g1 option instead to reduce the amount of debugging information stored. The GNU
-march=native option will also enable the fastest instruction set for the machine on which the code is
being compiled. Adept can vectorize certain floating-point array expressions making use of the SSE2, AVX
and AVX512 instruction sets on Intel hardware and the NEON instruction set on 64-bit ARM. If a library
you wish to use is installed in a non-system directory, say under / foo, then specify the locations as follows:

./configure CPPFLAGS="-I/foo/include" LDFLAGS="-L/foo/lib -Wl,-rpath,/foo/lib"

where the —rpath business is needed in order that the Adept shared library knows where to look for the
libraries it is dependent on. If you have them then for the benchmarking program you can also add the
non-system location of ADOL-C, CppAD and Sacado libraries with additional -1 and -L arguments, but
note that the —rpath argument is not needed in that case. You can see the more general options available by
running . /configure --help; for example, you can turn-off OpenMP parallelization in the computation
of Jacobian matrices using -—disable-openmp. See also section 5.6 for ways to make more fundamental
changes to the configuration of Adept. The output from the configure script provides information on
aspects of how Adept and the test programs will be built.

6. Build Adept by running

make

This will create the static and shared libraries in adept/.1libs.

7. Install the header files and the static and shared libraries by running

make install

fOpenBLAS is available from http://www.openblas.net /.
*ATLAS is available from http://math-atlas.sourceforge.net/.

http://www.openblas.net/
http://math-atlas.sourceforge.net/

1.2. Installing Adept and compiling your code to use it 5

If this is to be installed to a system directory, you will need to log in as the super-user first, or run sudo
make install on depending on your system.

. Build and run the test programs by running

make check

Note that this may be done without first installing the Adept library to a system directory. This compiles
a number of test programs in the test directory and runs them one by one; if any fail due to an incorrect
result then make check will fail. The make check operation also compiles autodiff _benchmark in
the benchmark directory for comparing the speed of the differentiation of two advection algorithms using
Adept, ADOL-C, CppAD and Sacado (or whichever subset of these tools you have on your system). It
also compiles animate for visualizing at a terminal what the algorithms are doing. Further information on
running these programs can be found in the README files in the relevant directories.

The test programs in in the test directory are as follows:

1.
2.

10.
11.

12.

13.

14.
15.
16.

test_adept: compares the results of numerical and automatic differentiation.

test_with without_ad: does the same but compiling the same source code both with and without auto-
matic differentiation (see test/Makefile for how this is done),

test_radiances: demonstrates the interfacing of Adeptr with code that provides its own Jacobian.

test_gsl_interface: implementation of a simple minimization problem using the L-BFGS minimizer in
the GSL library.

. test.misc: the trivial example from Hogan (2014).

test_checkpoint: demonstration of checkpointing, a useful technique for large codes.

. test_thread_safe: demonstration of the use of multiple OpenMP threads, each with its own instance of

an Adept stack.

. test_no_lib: demonstrates the use of the adept _source.h header file that means there is no need to link

to the Adept library in order to create an executable.

test_arrays, test_arrays._active, test_arrays._active_pausable, test_complex_arrays: test
many of the array capabilities described in chapter 3. Each of these four executables is compiled from the
same source file but with different compiler options in order to test the same array operations but with (a)
passive arrays, (b) active arrays, (c) active arrays but with stack recording “paused” (see setion 2.6.2), and
(d) complex arrays.

test_array.speed: compares the speed of array operations versus the equivalent C-style for loop.

test_radiances_array: as test_radiances but demonstrates the use of
add_derivative_dependence with array arguments.

test_fixed.arrays, test_fixed.arrays_active: tests the functionality of arrays with fixed dimen-
sions, i.e. those known at compile time. The two executables are compiled from the same source file, testing
(a) passive arrays and (b) active arrays.

test_constructors: test the different ways of constructing, assigning and linking arrays, and passing
them to and from functions.

test_derivatives: tests that all mathematical functions supported by Adept differentiate correctly.
test.array.-derivatives: tests that selected array operations differentiate correctly.

test_thread.safe_arrays: tests two ways to ensure arrays may be accessed and subsetted safely in a
multi-threaded environment.

1.2. Installing Adept and compiling your code to use it 6

17. test_packet_operations: tests that Adept’s use of Intel or ARM intrinsics to accelerate vector operations
leads to identical output to the equivalent scalar code.

18. test_fastexp: tests the correctness of Adept’s fast exponential function.

19. test_reduce_active: tests the correctness of the differentiation of reduction operations (sum, product,
maxval etc).

20. testminimizer: tests Adept’s minimization capabilities on the N-dimensional Rosenbrock banana func-
tion. Different dimensionality and minimization algorithms can be used, but by default the Levenberg-
Marquardt minimizer is used with the 2-dimensional Rosenbrock function.

To compile source files that use the Adept library, you need to make sure that adept .h and adept_arrays.h
are in your include path. If they are located in a directory that is not in the default include path, add something
like -1I/home/fred/include to the compiler command line. At the linking stage, add -1adept to the command
line to tell the linker to look for the 1ibadept.a static library, or equivalent shared library. If this file is in
a non-standard location, also add something like -L/home/fred/1ib -Wl,-rpath, /home/fred/1lib before
the —~1adept argument to specify its location. Section 2.6.3 provdes an example Makefile for compiling code that
uses the Adept library. Read on to see how you can compile an Adept application without needing to link to a
library.

1.2.2 Non-Unix platforms, and compiling Adept applications without linking to an exter-
nal library

Most of the difficulty in maintaining software that can compile on multiple platforms arises from the different
ways of compiling software libraries, and the need to test on compilers that may be proprietary. Unfortunately I
don’t have the time to maintain versions of Adept that build specifically on Microsoft Windows or other non-Unix
platforms. However, Adept is not a large library, so I have provided a very simple way to build an Adept application
without the need to link to a pre-compiled Adept library. In one of your source files and one only, add this near the
top:

#include <adept_source.h>

Typically you would include this in the source file containing the main function. This header file is simply a
concatenation of the Adept library source files, so when you compile a file that includes it, you compile in all the
functionally of the Adept library. All other source files in your application should include only the adept .h or
adept.arrays.h header file as normal. When you link all your object files together to make an executable, the
Adept functionality will be built in, even though you did not link to an external Adept library.

By default, adept_arrays.h does not enable BLAS (needed for matrix multiplication) or LAPACK (needed
for matrix inversion and solving linear systems of equations); to enable either BLAS alone, or both BLAS and
LAPACK, uncomment the lines near the top of adept_source.h defining HAVE_BLAS and HAVE_LAPACK, and
link against functioning BLAS and LAPACK library. A demonstration of the use of adept_source.h is in the
test/test_no_lib.cpp source file, which needs to be compiled together with test/algorithm.cpp to make
an executable. It is hoped that this feature will make it easy to use Adept on non-Unix platforms, although of
course this feature works just as well on Unix-like platforms as well.

A further point to note is that, under the terms of the license, it is permitted to copy all the Adept include files,
including adept_source.h, into an include directory in your software package and use it from there in both
binary and source-code releases of your software. This means that users do not need to install Adept separately
before they use your software. However, if you do this then remember that your use of these files must comply
with the terms of the Apache License, Version 2.0; see section 5.8 for details.

Chapter 2

Using Adept for automatic differentiation

2.1

Introduction

This chapter describes how to use Adept to differentiate your code. For simplicity, none of the examples use array
functionality described in the next chapter. Adept provides the following automatic-differentiation functionality:

Full Jacobian matrix Given the non-linear function y = f(x) relating vector y to vector x coded in C or C++,

after a little code modification Adept can compute the Jacobian matrix H = dy/dx, where the element at
row i and column j of H is H; ; = dy;/dx;. This matrix will be computed much more rapidly and accurately
than if you simply recompute the function multiple times, each time perturbing a different element of x by
a small amount. The Jacobian matrix is used in the Gauss-Newton and Levenberg-Marquardt minimization
algorithms.

Reverse-mode differentiation This is a key component in optimization problems where a non-linear function

needs to be minimized but the state vector x is too large for it to make sense to compute the full Jacobian
matrix. Atmospheric data assimilation is the canonical example in the field of meteorology. Given a non-
linear function J(x) relating the scalar to be minimized J to vector x, Adept will compute the vector of
adjoints dJ/dx. Moreover, for a component of the code that may be expressed as a multi-dimensional
non-linear function y = f(x), Adept can compute dJ/9x if it is provided with the vector of input adjoints
dJ /dy. In this case, 0J/9x is equal to the matrix-vector product HTdJ/dy, but it is computed here without
computing the full Jacobian matrix H. The vector dJ/dx may then be used in a quasi-Newton minimization
scheme (e.g., Liu and Nocedal, 1989).

Forward-mode differentiation Given the non-linear function y = f(x) and a vector of perturbations dx, Adept

will compute the corresponding vector 8y arising from a linearization of the function f. Formally, dy is
equal to the matrix-vector product Hox, but it is computed here without computing the full Jacobian matrix
H. Note that Adept is designed for the reverse case, so might not be as fast or economical in memory in
the forward mode as libraries written especially for that purpose (although Hogan, 2014, showed that it was
competitive).

Adept can automatically differentiate the following operators and functions:

The standard binary mathematical operators +, —, = and /.
The assignment versions of these operators: +=, —=, x= and /=.

The unary mathematical functions sgrt, exp, log, logl0, sin, cos, tan, asin, acos, atan, sinh, cosh,
tanh, abs, asinh, acosh, atanh, expml, loglp, cbrt, erf, erfc, exp2, 1log2, round, trunc, rint

and nearbyint,

The binary functions pow, atan2, min, max, fmin and fmax.

2.2. Code preparation 8

Variables to take part in expressions to be differentiated have a special “active” type; such variables can take part in
comparison operations ==, ! =, >, <, >= and <=, as well as the diagnostic functions isfinite, isinf and isnan.
Note that at present Adept is missing some functionality that you may require:

* Differentiation is first-order only: it cannot directly compute higher-order derivatives such as the Hessian
matrix, although section 4.1 describes how Adept can help compute the approximate Hessian if the cost
function (also known as the penalty function or objective function) is in a particular commonly used form.

¢ It has limited support for complex numbers; no support for mathematical functions of complex numbers, and
expressions involving operations (addition, subtraction, multiplication and division) on complex numbers are
not optimized.

* It can be applied to C and C++ only; Adept could not be written in Fortran since the language provides no
template capability.

It is hoped that future versions will remedy these limitations (and maybe even a future version of Fortran will
support templates).

Section 2.2 describes how to prepare your code for automatic differentiation, and section 2.3 describes how to
perform forward- and reverse-mode automatic differentiation on this code. Section 2.4 describes how to compute
Jacobian matrices. Section 2.5 provides a detailed description of how to interface an algorithm implemented
using Adept with a third-party minimization library. Section 2.6 describes how to call a function both with and
without automatic differentiation from within the same program. Section 2.7 describes how to interface to software
modules that compute their own Jacobians. Section 2.8 describes the user-oriented member functions of the Stack
class that contains the differential information and section 2.9 describes the member functions of the “active”
double-precision type adouble.

2.2 Code preparation

If you have used ADOL-C, CppAD or Sacado then you will already be familiar with what is involved in applying
an operator-overloading automatic differentiation package to your code. The user interface to Adept differs from
these only in the detail. It is assumed that you have an algorithm written in C or C++ that you wish to differentiate.
This section deals with the modifications needed to your code, while section 2.3 describes the small additional
amount of code you need to write to differentiate it.

In all source files containing code to be differentiated, you need to include the adept . h header file and import
the adouble type from the adept namespace. Assuming your code uses double precision, you then search and
replace double with the “active” equivalent adouble, but doing this only for those variables whose values depend
on the independent input variables. Under the hood this type is an alias for Act i ve<double>. The single-precision
equivalent is afloat, an alias for Active<float>. Active and passive variables of single and double precision
may be used together in the same expressions, but note that by default all differentiation is done in double precision.

If you wish to enable your code to be easily recompiled to use different precisions, then you may alternatively use
the generic Real type from the adept namespace with its active equivalent aReal (an alias for Active<Real>).
Section 5.6 describes how to redefine Real to represent single, double or quadruple precision. Automatic differ-
entiation will be performed using the same precision as Real, but but be aware that if this is defined to be the same
as a single-precision £loat, accumulation of round-off error can make the accuracy of derivatives insufficient for
minimization algorithms. The examples in the remainder of this chapter use only double precision.

Consider the following contrived algorithm from Hogan (2014) that takes two inputs and returns one output:

double algorithm(const double x[2]) {
double y = 4.0;
double s = 2.0xx[0] + 3.0*xx[1]»x[1];
y *= sin(s);

return y;

}
The modified code would look like this:

2.3. Applying reverse-mode differentiation 9

#include <adept.h>
using adept: :adouble;

adouble algorithm(const adouble x[2]) {
adouble y = 4.0;
adouble s = 2.0xx[0] + 3.0*x[1]#*x[1];
y *= sin(s);
return y;

}

Changes like this need to be done in all source files that form part of an algorithm to be differentiated.

If you need to access the real number underlying an adouble variable a, for example in order to use it as an
argument to the fprintf function, then use a.value () or adept::value (a). Any mathematical operations
performed on this real number will not be differentiated.

You may use adouble as the template argument of a Standard Template Library (STL) vector type (i.e.
std::vector<adouble>), or indeed any container where you access individual elements one by one. For
types allowing mathematical operations on the whole object, such as the STL complex and valarray types, you
will find that although you can multiply one std: : complex<adouble> or std: :valarray<adouble> object
by another, mathematical functions (exp, sin etc.) will not work when applied to whole objects, and neither will
some simple operations such as multiplying these types by an ordinary (non-active) double variable. Moreover,
the performance is not great because expressions cannot be fully optimized when in these containers. Therefore
If you need array functionality then you should use the features described in chapter 3. It is hoped that a future
version of Adept will include its own complex type.

2.3 Applying reverse-mode differentiation

Suppose you wanted to create a version of algorithm that returned not only the result but also the gradient of the
result with respect to its inputs, you would do this:
#include <adept.h>

double algorithm_and_gradient (
const double x_val[2], // Input values

double dy_dx[2]) { // Output gradients
adept: :Stack stack; // Where the derivative information is stored
using adept::adouble; // Import adouble from adept
adouble x[2] = {x_val[0], x_val[l]}; // Initialize active input variables
stack.new_recording () ; // Start recording
adouble y = algorithm(x); // Call version overloaded for adouble args
y.set_gradient (1.0); // Defines y as the cost function
stack.compute_adjoint () ; // Run the adjoint algorithm
dy_dx[0] = x[0].get_gradient (); // Store the first gradient
dy_dx[1] = x[1].get_gradient (); // Store the second gradient
return y.value(); // Return the result of the simple computation

}

The component parts of this function are in a specific order, and if this order is violated then the code will not run
correctly. The steps are now described.

2.3.1 Set-up stack to record derivative information

adept::Stack stack;

The stack object is where the differential version of the algorithm will be stored. When initialized, it makes itself
accessible to subsequent statements via a global variable, but using thread-local storage to ensure thread safety.
It must be initialized before the first adouble object is instantiated and it must not go out of scope until the last
adouble object is destructed. This is because adouble objects register themselves with the currently active stack,
and deregister themselves when they are destroyed; if the same stack is not active throughout the lifetime of such
adouble objects then the code will crash with a segmentation fault.

2.3. Applying reverse-mode differentiation 10

In the example here, the Stack object is local to the scope of the function. If another Stack object had been
initialized by the calling function and so was active at the point of entry to the function, then the local stack
object would throw an adept: :stack_already.active exception. See Test 3 described at test/README in
the Adept package if you want to use multiple Stack objects in the same program: the relevant source code is
in test/simulate_radiances.cpp, which temporarily deactivates the existing Stack objects in order that the
local one can run. A disadvantage of local Stack objects is that the memory it uses must be reallocated each time
the function is called. This can be overcome in several ways:

* Declare the Stack object to be static, which means that it will persist between function calls. This has
the disadvantage that you won’t be able to use other Stack objects in the program without deactivating this
one first (see test_radiances in the Adept package, referred to above, for how to do this).

e Initialize stack at a higher level in the program. If you need access to the stack, you may either
pass a reference to it to functions such as algorithm_and_gradient, or alternatively you can use the
adept::active_stack () function to return a pointer to the currently active stack object.

 Put it in a class so that it is accessible to member functions; this approach is demonstrated in section 2.5.

2.3.2 Initialize independent variables and start recording

adouble x[2] = {x_val[0], x_val[l]};
stack.new_recording () ;

The first line here simply copies the input values to the algorithm into adouble variables. These are the inde-
pendent variables, but note that there is no obligation for these to be stored as one array (as in CppAD), and for
forward- and reverse-mode automatic differentiation you do not need to tell Adept explicitly via a function call
which variables are the independent ones. The next line clears all differential statements from the stack so that it
is ready for a new recording of differential information. Note that the first line here actually stores two differential
statements, 8x [0]=0 and 8x [1]=0, which are immediately cleared by the new_recording function call. To avoid
the small overhead of storing redundant information on the stack, we could replace the first line with

x[0] .set_value(x_val[0]);
x[1].set_value(x_val[l]);

or

adept::set_values(x, 2, x_val);

which have the effect of setting the values of x without storing the equivalent differential statements.

Previous users of Adept version 0.9 should note that since version 1.0, the new_recording function replaces
the start function call, which had to be put before the independent variables were initialized. The problem
with this was that the independent variables had to be initialized with the set_value or set_values functions,
otherwise the gradients coming out of the automatic differentiation would all be zero. Since it was easy to forget
this, new_recording was introduced to allow the independent variables to be assigned in the normal way using the
assignment operator (=). But don’t just replace start in your version-0.9-compatible code with new_recording;
the latter must appear after the independent variables have been initialized.

2.3.3 Perform calculations to be differentiated

adouble y = algorithm(x);

The algorithm is called, and behind the scenes the equivalent differential statement for every mathematical state-
ment is stored in the stack. The result of the forward calculation is stored in y, known as a dependent variable.
This example has one dependent variable, but any number is allowed, and they could be returned in another way,
e.g. by passing a non-constant array to algorithm that is filled with the final values when the function returns.

2.4. Computing Jacobian matrices 11

2.3.4 Perform reverse-mode differentiation

y.set_gradient (1.0);
stack.compute_adjoint () ;

The first line sets the initial gradient (or adjoint) of y. In this example, we want the output gradients to be the
derivatives of y with respect to each of the independent variables; to achieve this, the initial gradient of y must be
unity.

More generally, if y was only an intermediate value in the computation of cost function J, then for the outputs of
the function to be the derivatives of J with respect to each of the independent variables, we would need to set the
gradient of y to dJ/dy. In the case of multiple intermediate values, a separate call to set_gradient is needed for
each intermediate value. If y was an array of length n then the gradient of each element could be set to the values
in a double array y_ad using

adept::set_gradients(y, n, y_ad);

The compute_adjoint () member function of stack performs the adjoint calculation, sweeping in re-
verse through the differential statements stored on the stack. Note that this must be preceded by at least
one set_gradient or set_gradients call, since the first such call initializes the list of gradients for
compute_adjoint () to act on. Otherwise, compute_adjoint () will throw a gradients_not_initialized
exception.

2.3.5 Extract the final gradients

dy_dx[0] = x[0].get_gradient () ;
dy_dx[1] x[1].get_gradient () ;

These lines simply extract the gradients of the cost function with respect to the two independent variables. Alter-
natively we could have extracted them simultaneously using

adept::get_gradients(x, 2, dy_dx);
To do forward-mode differentiation in this example would involve setting the initial gradients of x instead of y,

calling the member function compute_tangent_linear () instead of compute_adjoint (), and extracting the
final gradients from y instead of x.

2.4 Computing Jacobian matrices

Until now we have considered a function with two inputs and one output. Consider the following more general
function whose declaration is

void algorithm2 (int n, const adoublex x, int m, adoublex y);
where x points to the n independent (input) variables and y points to the m dependent (output) variables. The
following function would return the full Jacobian matrix:

#include <vector>
#include <adept.h>
void algorithm2_jacobian (

int n, // Number of input values

const doublex x_val, // Input values

int m, // Number of output values

doublex y_val, // Output values

doublex jac) { // Output Jacobian matrix
using adept::adouble; // Import Stack and adouble from adept
adept: :Stack stack; // Where the derivative information is stored
std::vector<adouble> x(n); // Vector of active input variables
adept::set_values (&x[0], n, x_val); // Initialize adouble inputs
stack.new_recording() ; // Start recording
std::vector<adouble> y (m); // Create vector of active output variables

algorithm2 (n, &x[0], m, &y[0]); // Run algorithm

2.4. Computing Jacobian matrices 12

stack.independent (&x[0], n); // Identify independent variables
stack.dependent (&y[0], m); // Identify dependent variables
stack.jacobian (jac); // Compute & store Jacobian in jac
for (int iy = 0; iy < m; ++iy)
y_valliy] = yliy].value(); // Extract value from active object
}
Note that:

The independent member function of stack is used to identify the independent variables, i.e. the variables
that the derivatives in the Jacobian matrix will be with respect to. In this example there are n independent
variables located together in memory and so can be identified all at once. Multiple calls are possible to
identify further independent variables. To identify a single independent variable, call independent with
just one argument, the independent variable (not as a pointer).

The dependent member function of stack identifies the dependent variables, and its usage is identical to

independent.

The memory provided to store the Jacobian matrix (pointed to by jac) must be a one-dimensional array of
size mXxn, where m is the number of dependent variables and n is the number of independent variables.

The resulting matrix is stored in the sense of the index representing the dependent variables varying fastest
(column-major order).

Internally, the Jacobian calculation is performed by multiple forward or reverse passes, whichever would be
faster (dependent on the numbers of independent and dependent variables).

The use of std: :vector<adouble> rather than new adouble[n] ensures no memory leaks in the case
of an exception being thrown, since the memory associated with x and y will be automatically deallocated
when they go out of scope.

As described in chapter 3, Adept version 2.0 introduced built-in multi-dimensional arrays of both active (e.g.
aVector and passive (e.g. Vector) variables. It therefore seems more natural to express the algorithm above in
terms of these objects, which could be done as follows:

#include <adept_arrays.h>

// Adept vectors know their own length, so lengths do not need to be
// passed in as well
adept::aVector algorithm?2 (const adept::aVectors& x);

void algorithm2_jacobian (

const adept::Vectors x_val, // Input values

adept: :Vectors y_val, // Output values (correctly sized or empty)
adept: :Matrixs jac) { // Output Jacobian matrix (correctly sized)
adept: :Stack stack; // Where the derivative information is stored
adept::aVector x = x_val; // Active vector of inputs
stack.new_recording () ; // Start recording
adept::aVector y = algorithm2 (x); // Run algorithm and store outputs
stack.independent (x) ; // Identify independent variables
stack.dependent (y) ; // Identify dependent variables
stack.jacobian (jac) ; // Compute & store Jacobian (since Adept 2.0.8)

// If jac is empty we can automatically resize it using this instead (since Adept 2.0.8):
//jac = stack.jacobian();

vy

val = value(y); // Extract the values from the active array

2.5. Real-world usage: interfacing Adept to a third-party minimization library 13

2.5 Real-world usage: interfacing Adept to a third-party minimization
library

Suppose we want to find the vector x that minimizes an cost function J(x) that consists of a large algorithm coded
using the Adept library and encapsulated within a C++ class. In this section we illustrate how it may be interfaced
to a third-party minimization algorithm with a C-style interface, specifically the free one in the GNU Scientific
Library. Note that since version 2.0.8, Adept provides its own minimization functionality, as described in chapter
4.

The full working version of this example, using the N-dimensional Rosenbrock banana function as the function
to be minimized, is in test/test_gsl_interface.cpp of the Adept software package (see the description of
Test 4 in test /README). The interface to the algorithm is as follows:

#include <vector>
#include <adept.h>
using adept: :adouble;
class State {

public:
// Construct a state with n state variables
State(int n) { active_x_.resize(n); x_.resize(n); }

// Minimize the function, returning true if minimization successful, false otherwise
bool minimize () ;
// Get copy of state variables after minimization
void x (std::vector<double>& x_out) const;
// For input state variables x, compute the function J(x) and return it
double calc_function_value (const doublex x);
// For input state variables x, compute function and put its gradient in dJ_dx
double calc_function_value_and_gradient (const doublex x, doublex dJ_dx);
// Return the size of the state vector
unsigned int nx () const { return active_x_.size(); }
private:
// Active version: the algorithm is contained in the definition of this function
adouble calc_function_value (const adoublex* x);
// DATA
adept::Stack stack_; // Adept stack object (must be before active state
// variables, e.g. adouble, in class definition)
std::vector<adouble> active_x_; // Active state variables (must be after Stack)
}i
The algorithm itself is contained in the definition of calc_function_value (const adoublex), which is im-
plemented using adouble variables (following the rules in section 2.2). However, the public interface to the class
uses only standard double types, so the use of Adept is hidden to users of the class. Of course, a complicated
algorithm may be implemented in terms of multiple classes that do exchange data via adouble objects. We will be
using a quasi-Newton minimization algorithm that calls the algorithm many times with trial vectors x, and for each
call may request not only the value of the function, but also its gradient with respect to x. Thus the public interface
provides calc_function_value (const doublex) and calc_function_value_and gradient, which could
be implemented as follows:
double State::calc_function_value (const doublex x) {
for (unsigned int i = 0; i < nx(); ++i) active_x_ [i] = x[i];

stack_.new_recording () ;
return value (calc_function_value (&active_x_[0]));

double State::calc_function_value_and_gradient (const doublex x, doublex dJ_dx) {
for (unsigned int i = 0; i < nx(); ++1) active_x_[i] = x[1];
stack_.new_recording () ;
adouble J = calc_function_value (&active_x_[0]);
J.set_gradient (1.0);
stack_.compute_adjoint () ;
adept::get_gradients (&active_x_[0], nx(), dJ_dx);
return value (J);

2.5. Real-world usage: interfacing Adept to a third-party minimization library 14

The first function simply copies the double inputs into an adouble vector and runs the version of
calc_function_value for adouble arguments. Obviously there is an inefficiency here in that gradients are
recorded that are then not used, and this function would be typically 2.5-3 times slower than an implementation of
the algorithm that did not store gradients. Section 2.6 describes three ways to overcome this problem. The second
function above implements reverse-mode automatic differentiation as described in section 2.3.

The minimize member function could be implemented using GSL as follows:

#include <iostream>
#include <gsl/gsl_multimin.h>

bool State::minimize () {
// Minimizer settings
const double initial_step_size = 0.01;
const double line_search_tolerance = 1.0e-4;
const double converged_gradient_norm = 1.0e-3;
// Use the "limited-memory BFGS" quasi-Newton minimizer
const gsl_multimin_fdfminimizer_typex minimizer_type
= gsl_multimin_fdfminimizer_vector_bfgs2;

// Declare and populate structure containing function pointers
gsl_multimin_function_fdf my_function;

my_function.n = nx();

my_function.f = my_function_value;

my_function.df = my_function_gradient;
my_function.fdf = my_function_value_and_gradient;

my_function.params = reinterpret_cast<voidx«> (this);

// Set initial state variables using GSL’s vector type

gsl_vector =xx;

x = gsl_vector_alloc(nx());

for (unsigned int i = 0; i < nx(); ++i) gsl_vector_set(x, i, 1.0);

// Configure the minimizer
gsl_multimin_fdfminimizerx minimizer
= gsl_multimin_fdfminimizer_alloc (minimizer_type, nx());
gsl_multimin_fdfminimizer_set (minimizer, &my_function, x,
initial_step_size, line_search_tolerance);
// Begin loop
size_t iter = 0;
int status;
do {
++iter;
// Perform one iteration
status = gsl_multimin_fdfminimizer_ iterate (minimizer) ;

// Quit loop if iteration failed
if (status != GSL_SUCCESS) break;

// Test for convergence

status = gsl_multimin_test_gradient (minimizer->gradient, converged_gradient_norm) ;
}
while (status == GSL_CONTINUE && iter < 100);

// Free memory
gsl_multimin_fdfminimizer_free (minimizer);
gsl_vector_free (x);

// Return true if successfully minimized function, false otherwise
if (status == GSL_SUCCESS) {
std::cout << "Minimum found after " << iter << " iterations\n";
return true;
}
else {
std::cout << "Minimizer failed after " << iter << " iterations: "

2.6. Calling an algorithm with and without automatic differentiation from the same program 15

<< gsl_strerror (status) << "\n";
return false;

}

The GSL interface requires three functions to be defined, each of which takes a vector of state variables x as
input: my_function_value, which returns the value of the function; my_function_gradient, which returns the
gradient of the function with respect to x; and my_function_value_and.-gradient, which returns the value and
the gradient of the function. These functions are provided to GSL as function pointers (see above), but since GSL
is a C library, we need to use the ‘extern "C"’ specifier in their definition. Thus the function definitions would
be:

extern "C"

double my_function_value (const gsl_vector* x, voidx params) {
Statex state = reinterpret_cast<Statex>(params);
return state->calc_function_value (x->data) ;

extern "C"

void my_function_gradient (const gsl_vector* x, voidx params, gsl_vectorx gradJd) ({
Statex state = reinterpret_cast<Statex> (params);
state->calc_function_value_and_gradient (x->data, gradJd->data);

extern "C"
void my_function_value_and_gradient (const gsl_vectorx x, wvoid* params,
doublex J, gsl_vectorx gradd) {
Statex state = reinterpret_cast<Statex>(params);
xJ = state->calc_function_value_and_gradient (x->data, gradJ->data);

}

When the gs1 multimin_fdfminimizer_iterate function is called, it chooses a search direction and performs
several calls of these functions to approximately minimize the function along this search direction. The this
pointer (i.e. the pointer to the State object), which was provided to the my_function structure in the definition
of the minimize function above, is provided as the second argument to each of the three functions above. Unlike
in C, in C++ this pointer needs to be cast back to a pointer to a State type, hence the use of reinterpret_cast.

That’s it! A call to minimize should successfully minimize well behaved differentiable multi-dimensional
functions. It should be straightforward to adapt the above to work with other minimization libraries.

2.6 Calling an algorithm with and without automatic differentiation from
the same program

The calc_function_value (const doublex) member function defined in section 2.5 is sub-optimal in that
it simply calls the calc_function_value (const adoublex) member function, which not only computes the
value of the function, it also records the derivative information of all the operations involved. This information
is then ignored. This overhead makes the function typically 2.5-3 times slower than it needs to be, although
sometimes (specifically for loops containing no trancendental functions) the difference between an algorithm coded
in terms of doubles and the same algorithm coded in terms of adoubles can exceed a factor of 10 (Hogan, 2014).
The impact on the computational speed of the entire minimization process depends on how many requests are made
for the function value only as opposed to the gradient of the function, and can be significant. We require a way
to avoid the overhead of Adept computing the derivative information for calls to calc_function_value (const
doublex), without having to maintain two versions of the algorithm, one coded in terms of doubles and the other
in terms of adoubles. The three ways to achieve this are now described.

2.6. Calling an algorithm with and without automatic differentiation from the same program 16

2.6.1 Function templates

The simplest approach is to use a function template for those functions that take active arguments, as demonstrated
in the following example:
#include <adept.h>

class State {
public:

template <typename xdouble>
xdouble calc_function_value (const xdoublex Xx);

}i

// Example function definition that must be in a header file included
// by any source file that calls calc_function_value
template <typename xdouble>
inline
xdouble State::calc_function_value (const xdoublex x) {
xdouble y = 4.0;
xdouble s = 2.0xx[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

This takes the example from section 2.2 and replaces adouble by the template type xdouble. Thus,
calc_function_value can be called with either double or adouble arguments, and the compiler will compile
inline the inactive or active version accordingly. Note that the function template need not be a member function of
a class.

This technique is good if only a small amount of code needs to be differentiated, but for large models the use of
inlining is likely to lead to duplication of compiled code leading to large executables and long compile times. The
following two approaches do not have this drawback and are suitable for large codes.

2.6.2 Pausable recording

The second method involves compiling the entire code with the ADEPT_RECORDING_PAUSABLE preprocessor vari-
able defined, which can be done by adding an argument -DADEPT_RECORDING_PAUSABLE to the compler com-
mand line. This modifies the behaviour of mathematical operations performed on adouble variables: instead
of performing the operation and then storing the derivative information, it performs the operation and then only
stores the derivative information if the Adept stack is not in the “paused” state. We then use the following member
function definition instead of the one in section 2.5:
double State::calc_function_value (const doublex x) {

stack_.pause_recording() ;

for (unsigned int i = 0; i < nx(); ++i) active_x_ [i] = x[i];

double J = value(calc_function_value (&active_x_[0]));

stack_.continue_recording () ;

return J;

}

By pausing the recording for all operations on adouble objects, most of the overhead of storing derivative infor-
mation is removed. The extra run-time check to see whether the stack is in the paused state, which is carried out
by mathematical operations involving adouble objects, generally adds a small overhead. However, in algorithms
where most of the number crunching occurs in loops containing no trancendental functions, even if the stack is in
the paused state, the presence of the check can prevent the compiler from agressively optimizing the loop. In that
instance the third method may be preferable.

2.6.3 Multiple object files per source file

The third method involves compiling each source file containing functions with adouble arguments
twice. The first time, the code is compiled normally to produce an object file containing com-

2.6. Calling an algorithm with and without automatic differentiation from the same program 17

piled functions including automatic differentiation. =~ The second time, the code is compiled with the
-DADEPT_NO_AUTOMATIC.DIFFERENTIATION flag on the compiler command line. This instructs the adept.h
header file to turn off automatic differentiation by defining the adouble type to be an alias of the double type.
This way, a second set of object files are created containing overloaded versions of the same functions as the first
set but this time without automatic differentiation. These object files can be compiled together to form one exe-
cutable. In the example presented in section 2.5, the calc_function_value function would be one that would
be compiled twice in this way, once to provide the calc_function_value (const adoublex) version and the
other to provide the calc_function.value (const doublex) version. Note that any functions that do not in-
clude adouble arguments must be compiled only once, because otherwise the linker will complain about multiple
versions of the same function.

The following shows a Makefile from a hypothetical project that compiles two source files (algorithml.cpp
and algorithm2.cpp) twice and a third (main.cpp) once:

Specify compiler and flags

CXX = g++

CXXFLAGS = -Wall -03 -g

Normal object files to be created

OBJECTS = algorithml.o algorithm2.o main.o

Object files created with no automatic differentiation
NO_AD_OBJECTS = algorithml_noad.o algorithm2_noad.o
Program name

PROGRAM = my_program

Include-file location

INCLUDES = -I/usr/local/include

Library location and name, plus the math library
LIBS = -L/usr/local/lib —-1lm —ladept

Rule to build the program (typing "make" will use this rule)
$ (PROGRAM) : $ (OBJECTS) $ (NO_AD_OBJECTS)
$ (CXX) $ (CXXFLAGS) $(OBJECTS) $(NO_AD_OBJECTS) $(LIBS) -o $(PROGRAM)
Rule to build a normal object file (used to compile all objects in OBJECTS)
.0: %.cpp
$ (CXX) $ (CXXFLAGS) $(INCLUDES) -c $<
Rule to build a no-automatic-differentiation object (used to compile ones in NO_AD_OBJECTS)
_noad.o: %.cpp
$ (CXX) $(CXXFLAGS) $(INCLUDES) -DADEPT_NO_AUTOMATIC_DIFFERENTIATION -c $< -o $@

il

o

s

o

There is a further modification required with this approach, which arises because if a header
file declares both the double and adouble versions of a function, then when compiled with
-DADEPT_NO.AUTOMATIC.DIFFERENTIATION it appears to the compiler that the same function is declared twice,
leading to a compile-time error. This can be overcome by using the preprocessor to hide the adouble version if
the code is compiled with this flag, as follows (using the example from section 2.5):

#include <adept.h>

class State {
public:

double calc_function_value (const doublex x);
private:
#ifndef ADEPT_NO_AUTOMATIC_DIFFERENTIATION
adouble calc_function_value (const adoublex x);
#endif

bi

A final nuance is that if the code contains an adouble object x, then x.value () will work fine in the com-
pilation when x is indeed of type adouble, but in the compilation when it is set to a simple double variable,
the value () member function will not be found. Hence it is better to use adept : : value (x), which returns a
double regardless of the type of x, and works regardless of whether the code was compiled with or without the
-DADEPT_NO_AUTOMATIC_DIFFERENTIATION flag.

2.7. Interfacing with software containing hand-coded Jacobians 18

2.7 Interfacing with software containing hand-coded Jacobians

Often a complicated algorithm will include multiple components. Components of the code written in C or C++ for
which the source is available are straightforward to convert to using Adept, following the rules in section 2.2. For
components written in Fortran, this is not possible, but if such components have their own hand-coded Jacobian
then it is possible to interface Adept to them. More generally, in certain situations automatic differentiation is much
slower than hand-coding (see the Lax-Wendroff example in Hogan, 2014) and we may wish to hand-code certain
critical parts. In general the Jacobian matrix is quite expensive to compute, so this interfacing strategy makes most
sense if the component of the algorithm has a small number of inputs or a small number of outputs. A full working
version of the following example is given as “Test 3” in the test directory of the Adept package (see specifically
test /README and test/test_radiances.cpp).

Consider the example of a radiative transfer model for simulating satellite microwave radiances at two wave-
lengths, I and J, which takes as input the surface temperature 7; and the vertical profile of atmospheric temperature
T from a numerical weather forecast model. Such a model would be used in a data assimilation system to as-
similate the temperature information from the satellite observations into the weather forecast model. In addition
to returning the radiances, the model returns the gradient dI/07; and the gradients 0/97; for all height layers i
between 1 and #n, and likewise for radiance J. The interface to the radiative transfer model is the following:

void simulate_radiances (int n, // Size of temperature array
// Input variables:
double surface_temperature,
const doublex temperature,
// Output variables:
double radiance[2],
// Output Jacobians:

double dradiance_dsurface_temperature(2],
doublex dradiance_dtemperature) ;

The calling function needs to allocate 2 xn elements for the temperature Jacobian dradiance_dtemperature to
be stored, and the stored Jacobian will be oriented such that the radiance index varies fastest.

Adept needs to be told how to relate the radiance perturbations 8/ and 8J, to perturbations in the input variables,
8T, and 8T; (for all layers i). Mathematically, we wish the following relationship to be stored within the Adept
stack:

ol ", al
81 = a—TSSTS—i—;a—TiSTi. Q2.1

This is achieved with the following wrapper function, which has adouble inputs and outputs and therefore can be
called from within other parts of the algorithm that are coded in terms of adouble objects:

void simulate_radiances_wrapper (int n,

const adouble& surface_temperature,
const adoublex temperature,
adouble radiance[2]) {

// Create inactive (double) versions of the active (adouble) inputs

double st = value (surface_temperature);

std::vector<double> t (n);

for (int i = 0; i < n; ++i) t[i] = value (temperature[i]);

// Declare variables to hold the inactive outputs and their Jacobians
double r[2];

double dr_dst[2];

std: :vector<double> dr_dt (2+*n) ;

// Call the non-Adept function
simulate_radiances (n, st, &t[0], &r[0], dr_dst, &dr_dt[0]);

// Copy the results into the active variables, but use set_value in order
// not to write any equivalent differential statement to the Adept stack
radiance[0] .set_value(r[0]);

radiance[l] .set_value(r[1l]);

2.8. Member functions of the Stack class 19

// Loop over the two radiances and add the differential statements to the Adept stack

for (int i = 0; i < 2; ++1i) {
// Add the first term on the right-hand-side of Equation 1 in the text
radiance[i] .add_derivative_dependence (surface_temperature, dr_dst[i]);
// Now append the second term on the right-hand-side of Equation 1. The third argument
// "n" of the following function says that there are n terms to be summed, and the fourth
// argument "2" says to take only every second element of the Jacobian dr_dt, since the
// derivatives with respect to the two radiances have been interlaced. If the fourth
// argument is omitted then relevant Jacobian elements will be assumed to be contiguous
// in memory.
radiance[i] .append_derivative_dependence (temperature, &dr_dt([i], n, 2);

}

In this example, the form of add_derivative_dependence for one variable on the right-hand-side of the deriva-
tive expression has been used, and the form of append-derivative_dependence for an array of variables on
the right-hand-side has been used. As described in section 2.9, both functions have forms that take single variables
and arrays as arguments. Note also that the use of std: : vector<double> rather than new double[n] ensures
that if simulate_radiances throws an exception, the memory allocated to hold dr_dt will be freed correctly.

2.8 Member functions of the Stack class

This section describes the user-oriented member functions of the Stack class. Some functions have arguments
with default values; if these arguments are omitted then the default values will be used. Some of these functions
throw Adept exceptions, defined in section 5.5.

Stack (bool activate_immediately = true) The constructor for the Stack class. Normally Stack ob-
jects are constructed with no arguments, which means that the object will attempt to make itself the currently
active stack by placing a pointer to itself into a global variable. If another Stack object is currently active,
then the present one will be fully constructed, left in the unactivated state, and an stack.already._active
exception will be thrown. If a Stack object is constructed with an argument “false”, it will be started in
an unactivated state, and a subsequent call to its member function activate will be needed to use it.

void new_recording() Clears all the information on the stack in order that a new recording can be started.
Specifically this function clears all the differential statements, the list of independent and dependent variables
(used in computing Jacobian matrices) and the list of gradients used by the compute_tangent_linear and
compute_adjoint functions. Note that this function leaves the memory allocated to reduce the overhead
of reallocation in the new recordings.

bool pause_recording() Stops recording differential information every time an adouble statement is ex-
ecuted. This is useful if within a single program an algorithm needs to be run both with and with-
out automatic differentiation. This option is only effective within compilation units compiled with
ADEPT_RECORDING_PAUSABLE defined; if it is, the function returns t rue, otherwise it returns false. Fur-
ther information on using this and the following function are provided in section 2.6.2.

bool continue recording() Instruct a stack that may have previously been put in a paused state to now
continue recording differential information as normal. This option is only effective within compilation units
compiled with ADEPT_RECORDING_PAUSABLE defined; if it is, the function returns t rue, otherwise it returns

false.

bool is_recording() Returns false if recording has been paused with pause_recording () and the code
has been compiled with ADEPT_RECORDING_PAUSABLE defined. Otherwise returns true.

void compute tangent_linear () Perform a tangent-linear calculation (forward-mode differentiation) using
the stored differential statements. Before calling this function you need call the adouble: :set_gradient
or set_gradients function (see section 2.9) on the independent variables to set the initial gradients, oth-
erwise the function will throw a gradients.not_initialized exception. This function is synonymous
with forward ().

2.8. Member functions of the Stack class 20

void compute_adjoint () Perform an adjoint calculation (reverse-mode differentiation) using the stored
differential statements. Before calling this function you need call the adouble::set_gradient or
set_gradients function on the dependent variables to set the initial gradients, otherwise the function
will throw a gradients_not_initialized exception. This function is synonymous with reverse ().

void independent (const adouble& x) Before computing Jacobian matrices, you need to identify the in-
dependent and dependent variables, which correspond to the columns and rows of he Jacobian, respectively.
This function adds x to the list of independent variables. If it is the nth variable identified in this way, the
nth column of the Jacobian will correspond to derivatives with respect to x.

void dependent (const adoubles& y) Addy to the list of dependent variables. If it is the mth variable iden-
tified in this way, the mth row of the Jacobian will correspond to derivatives of y with respect to each of the
independent variables.

void independent (const adouble* x ptr, sizet n) Add n independent variables to the list, which
must be stored consecutively in memory starting at the memory pointed to by x_ptr.

void dependent (const adouble* y ptr, size t n) Add n dependent variables to the list, which must
be stored consecutively in memory starting at the memory pointed to by y_ptr.

void jacobian(double* jacobian out) Compute the Jacobian matrix, i.e., the gradient of the m dependent
variables (identified with the dependent (. . .) function) with respect to the n independent variables (iden-
tified with independent (.. .). The result is returned in the memory pointed to by jacobian_out, which
must have been allocated to hold m x n values. The result is stored in column-major order, i.e., the m diemen-
sion of the matrix varies fastest. If no dependents or independents have been identified, then the function
will throw a dependents_or_independents_not_identified exception. In practice, this function calls

jacobian forward if n < m and jacobian reverse if n > m.

void jacobian (Matrix jac) Compute Jacobian matrix and store in a correctly sized Adept Matrix object
jac, which may be a subset of an larger matrix. See chapter 3 for a full description of Adept array objects.

Matrix jacobian() As above but the Jacobian matrix is returned from the function.

void jacobian forward (double* jacobian out) Compute the Jacobian matrix by executing n forward
passes through the stored list of differential statements; this is typically faster than jacobian_reverse for
n<m.

void jacobian forward(Matrix jac) As above but store in a correctly sized Adept Matrix object jac.
Matrix jacobian_forward() As above but the Jacobian matrix is returned from the function.

void jacobian reverse (doublex jacobian out) Compute the Jacobian matrix by executing m reverse
passes through the stored list of differential statements; this is typically faster than jacobian_forward
forn > m.

void jacobian reverse (Matrix jac) As above but store in a correctly sized Adept Matrix object jac.
Matrix jacobian_reverse () As above butthe Jacobian matrix is returned from the function.

void clear gradients () Clear the gradients set with the set _gradient member function of the adouble
class. This enables multiple adjoint and/or tangent-linear calculations to be performed with the same record-

ing.

void clear_independents () Clear the list of independent variables, enabling a new Jacobian matrix to be
computed from the same recording but for a different set of independent variables.

void clear dependents () Clear the list of dependent variables, enabling a new Jacobian matrix to be com-
puted from the same recording but for a different set of dependent variables.

2.8. Member functions of the Stack class 21

size t n_independents () Return the number of independent variables that have been identified.
size_t n_dependents () Return the number of dependent variables that have been identified.
size t n_statements () Return the number of differential statements in the recording.

size t n operations() Return the total number of operations in the recording, i.e the total number of terms
on the right-hand-side of all the differential statements.

size t max gradients () Return the number of working gradients that need to be stored in order to perform a
forward or reverse pass.

size_t memory () Returnthe number of bytes currently used to store the differential statements and the working
gradients. Note that this does not include memory allocated but not currently used.

size t n gradients registered() Each time an adouble object is created, it is allocated a unique index
that is used to identify its gradient in the recorded differential statements. When the object is destructed,
its index is freed for reuse. This function returns the number of gradients currently registered, equal to the
number of adouble objects currently created.

void print _status(std::ostream& os = std::cout) Print the current status of the Stack object, such
as number of statements and operations stored and allocated, to the stream specified by os, or standard
output if this function is called with no arguments. Sending the Stack object to the stream using the “<<”
operator results in the same behaviour.

void print_statements (std::ostream& os = std::cout) Print the list of differential statements to the
specified stream (or standard output if not specified). Each line corresponds to a separate statement, for
example “d[3] = 1.2xd[1] + 3.4xd[2]".

bool print_gradients (std::ostream& os = std::cout) Print the vector of gradients to the specified
stream (or standard output if not specified). This function returns false if no set_gradient function
has been called to set the first gradient and initialize the vector, and true otherwise. To diagnose what
compute_tangent_linear and compute_adjoint are doing, it can be useful to call print_gradients
immediately before and after.

void activate() Activate the Stack object by copying its this pointer to a global variable that will be
accessed by subsequent operations involving adouble objects. If another Stack is already active, a
stack.already.active exception will be thrown. To check whether this is the case before calling
activate (), check that the active_stack () function (described below) returns 0.

void deactivate () Deactivate the Stack object by checking whether the global variable holding the pointer
to the currently active Stack is equal to this, and if it is, setting it to 0.

bool is_active() Returns true if the Stack object is the currently active one, false otherwise.

void start () This function was present in version 0.9 to activate a Stack object, since in that version they
were not constructed in an activated state. This function has now been deprecated and will always throw a
feature_not_available exception.

int max_jacobian threads() Return the maximum number of OpenMP threads available for Jacobian cal-
culations. The number will be 1 if either the library was or the current source code is compiled without
OpenMP support (i.e. without the — fopenmp compiler and linker flag). (Introduced in Adept version 1.1.)

int set max_jacobian threads (int n) Set the maximum number of threads to be used in Jacobian calcu-
lations to n, if possible. A value of 1 indicates that OpenMP will not be used, while a value of 0 indicates
that the maximum available will be used. Returns the maximum that will be used, which may be fewer than
requested, e.g. 1 if the Adept library was compiled without OpenMP support. (Introduced in Adept version
1.1)

2.9. Member functions of the adouble object 22

void preallocate_statements (int n) If you know in advance roughly how many differential statements
will be stored by an algorithm then you may be able to speed-up the first use of the stack by preallocating
the memory needed to store them. More memory will still be allocated if needed, but this should reduce the
number of allocations and copies.

void preallocate operations (int n) Likewise, if you know in advance roughly how many operations
will be stored then you can speed-up the first use of the stack with this member function.

The following non-member functions are provided in the adept namespace:
adept: :Stack* active_stack() Returns a pointer to the currently active Stack object, or 0 if there is none.

bool is_thread.unsafe() Returns true if your code has been compiled with
ADEPT_STACK_THREAD_UNSAFE, false otherwise.

2.9 Member functions of the adouble object

This section describes the user-oriented member functions of the adouble class. Some functions have arguments
with default values; if these arguments are omitted then the default values will be used. Some of these functions
throw Adept exceptions, defined in section 5.5.

double value () Return the underlying double value.

void set_value (double x) Setthe value of the adouble object to x, without storing the equivalent differen-
tial statement in the currently active stack.

void set_gradient (const double& gradient) Set the gradient corresponding to this adouble variable.
The first call of this function (for any adouble variable) after a new recording is made also initial-
izes the vector of working gradients. This function should be called for one or more adouble ob-
jects after a recording has been made but before a call to Stack::compute_tangent_linear() or

Stack: :compute_adjoint ().

void get_gradient (double& gradient) Set gradient to the value of the gradient correspond-
ing to this adouble object. This function is used to extract the result after a call to
Stack::compute_tangent_linear () or Stack: :compute_adjoint (). If the set_gradient function
was not called since the last recording was made, this function will throw a gradients.not_-initialized
exception. The function can also throw a gradient_out_of_range exception if new adouble objects were
created since the first set_gradient function was called.

void add derivative dependence (const adouble& r, const double&s g) Add a differential state-
ment to the currently active stack of the form 81 = g x Or, where 1 is the adouble object from which
this function is called. This function is needed to interface to software containing hand-coded Jacobians, as
described in section 2.7; in this case g is the gradient d1/dr obtained from such software.

void append.derivative_dependence (const adouble& r, const double& g) Assuming that the
same adouble object has just had its add.derivative dependence member function called, this
function appends + g X Or to the most recent differential statement on the stack. If the calling
adouble object is different, then a wrong.gradient exception will be thrown. Note that multiple
append_derivative_dependence calls can be made in succession.

void add._derivative_dependence (const adouble* r, const doublex g,
sizet n = 1, sizet mstride = 1)
Add a differential statement to the currently active stack of the form 81 = legl m[i] x 8r[i], where 1
is the adouble object from which this function is called. If the g_stride argument is provided, then the
index to the g array will be i X g_stride rather than i. This is useful if the Jacobian provided is oriented

such that the relevant gradients for 1 are not spaced consecutively.

2.9. Member functions of the adouble object 23

void append derivative_dependence (const adoublex rhs, const doublex g,

)) sizeJ’T n =1, sizet gstride = 1)))
Assuming that the same adouble object has just called the add derivative dependence function, this

function appends + Z::OI m[i] X dr[i] to the most recent differential statement on the stack. If the calling
adouble object is different, then a wrong_gradient exception will be thrown. The g_stride argument
behaves the same way as in the previous function described.

The following non-member functions are provided in the adept namespace:

double value (const adoubles& x) Returns the underlying value of x as a double. This is useful to
enable x to be used in fprintf function calls. It is generally better to use adept::value (x)
rather than x.wvalue(), because the former also works if you compile the code with the
ADEPT_NO.AUTOMATIC.DIFFERENTIATION flag set, as discussed in section 2.6.3.

void set_values (adoublex x, size t n, const doublex x_val) Set the value of the n adouble ob-
jects starting at x to the values in x_val, without storing the equivalent differential statement in the currently
active stack.

void set_gradients (adouble* x, size t n, const doublex gradients) Set the gradients corre-
sponding to the n adouble objects starting at x to the n doubles starting at gradients. This has the
same effect as calling the set_gradient member function of each adouble object in turn, but is more
concise.

void get_gradients (const adouble* y, sizet n, doublex gradients) Copy the gradient of the n
adouble objects starting at y into the n doubles starting at gradients. This has the same effect as
calling the get_gradient member function of each adouble object in turn, but is more concise. This
function can throw a gradient_out_of_range exception if new adouble objects were created since the
first set_gradients function or set_gradient member function was called.

Chapter 3

Using Adept’s array functionality

3.1 Introduction

The design of Adept’s array capability and many of the functions is inspired to a significant extent by the built-in
array support in Fortran 90 (and later), and a lesser extent by Matlab, although implemented in the “C++ way”, e.g.
default row-major order with all array indices starting from zero. Future additions to the array capability in Adept
will attempt to reproduce built-in Fortran array functions if available®. This design makes Adept a good choice if
you have Fortran code that you wish to convert to C++. Adept provides the following array functionality:

Multi-dimensional arrays. Standard dynamically sized arrays can have an arbitrary number of dimensions (al-
though indexing and slicing is supported only up to 7), and may refer to non-contiguous areas of memory.
See section 3.2.

Mathematical operators and functions. Adept supports array expressions containing the standard mathematical
operators +, —, » and /, as well as their assignment versions +=, -=, == and /=. When applied to arrays, they
work “element-wise”, applying the same operation to every element of the arrays. Adept also supports array
operations on all the mathematical functions listed in section 2.1. The following operators and functions
return boolean array expressions: ==, !=, >, <, >=and <=, isfinite, isinf and isnan. See section 3.3.

Array slicing. There are many ways to produce an array that references a subset of another array, and therefore
can be used as an lvalue in a statement. Arrays can be indexed with scalar integers, a contiguous range
of integers, a strided range of integers or an arbitrary list of integers. This is facilitated with “__" (a double
underscore) and “end”, such that & (__, end-1) returns a vector pointing to the penultimate column of matrix
A. The member function subset produces an array pointing to a contiguous subset of the original array,
while diag.vector and diagmatrix produce arrays pointing to the diagonal of the original array. T
produces an array pointing to the transpose of the original array. See section 3.4.

Passing arrays to and from functions. Adept uses a reference-counting approach to implement the storage of
array data, enabling multiple array objects to point to the same data, or parts of it in the case of array slices.
This makes it straightforward to pass arrays to and from functions without having to perform a deep copy.
See section 3.5.

Array reduction operations. The functions sum, mean, product, minval, maxval and norm2 perform reduc-
tion operations that return an array of lower rank to the expression they are applied to. The functions a1l
and any do the same but for boolean expressions. count returns the number of t rue elements in a boolean
expression. See section 3.6.

*This decision may puzzle some readers, since Fortran is a dirty word to many C++ users due to the limitations of the FORTRAN 77
language. Many of these limitations were overcome in Fortran 90, whose array functionality in particular is rather well designed. Indeed, the
pioneering “Blitz++” C++ array library (Veldhuizen, 1995) also reproduces many Fortran array functions. All references to Fortran in this
document imply the 1990 (or later) standard.

24

3.2. The Array class 25

Array expansion operations. The functions outer_product and spread return an expression of a higher rank
than the expression they are applied to. See section 3.7

Conditional operations. Two convenient ways are provided to perform an operation on an array depending on
the result of a boolean expression: where and £ind. The statement A.where (B>0) =C assigns elements of
C to elements of A whenever the corresponding element of B is greater than zero. For vectors only, the same
result could be obtained with A (£ind (B>0)) =C (£ind (B>0)). See section 3.8.

Fixed-size arrays. Adept provides a fixed-size array class with dimensions (up to seven) that are known at compile
time. The functionality is very similar to standard dynamic arrays.

Special square matrices. Adept uses specific classes for symmetric, triangular and band-diagonal matrices, the
latter of which use compressed storage and include diagonal and tridiagonal matrices. Certain operations
such as matrix multiplication and solving linear equations are optimized especially for these objects. See
section 3.10.

Matrix multiplication. Matrix multiplication can be applied to one- and two-dimensional arrays using the
matmul function, of for extra syntactic sugar, the “x+” pseudo-operator. Adept uses whatever BLAS (Basic
Linear Algebra Subroutines) support is available on your system, including optimized versions for symmet-
ric and band-diagonal matrices. See section 3.11.

Linear algebra. Adept uses the LAPACK library to invert matrices and solve linear systems of equations. See
section 3.12.

Array bounds and alias checking. Adept checks at compile time that terms in an array expression accord in
rank, and at run time that they accord in the size of each dimension. Run-time alias checking is performed
to determine if any objects on the right-hand-side of a statement overlap in memory with the left-hand-side
of the statement, making a temporary copy of the right-hand-side if they do. This can be overridden with the
noalias function. See section 3.14.

Interoperability with Fortran arrays. The Fortran 2018 standard enables Fortran’s assumed-shape arrays to be
passed to and from C/C++. Section 3.18 describes how they can be treated as Adept arrays within C++.

3.2 TheArray class

The bread and butter of array operations is provided by the Array class template (in the adept namespace along
with all other public types and classes), which has the following declaration:
namespace adept {
template <int Rank, typename Type = Real, bool IsActive = false>

class Array;

}

The first template argument provides the number of dimensions of the array and may be 1 or greater, although
indexing and slicing is only supported up to 7 dimensions. The second argument is the numerical type being stored
and can be any simple integer or real number, including bool. The default type is adept: :Real, which is the
default floating-point type the Adept library has been compiled to use for computing derivatives, and is usually
double. The final argument states whether the array is “active”, i.e. whether it participates in the differentiation
of an algorithm.

A number of typedefs are provided for the most common types of array: Vector, Matrix, Array3D and
S0 on up to Array7D provide inactive arrays of type Real and rank 1-7. The corresponding active types are
aVector, aMatrix, aArray3D etc. Arrays of other numeric types have the pattern boolVector, intVector,
floatVector, afloatVector, and similarly for matrices and higher dimensional arrays. If you wanted shortcuts
for other types you could do the following:

typedef adept::Array<4,unsigned int> uintArray4D;
typedef adept::Array<2,long double,true> alongdoubleMatrix; // Active

3.2. The Array class 26

An Array with uninitialized elements can be constructed in numerous ways:

using namespace adept;

Vector v; // Initialize an empty vector

Array3D A(3,4,5); // Initialize a 3x4x5 array (up to 7 arguments possible)
Matrix M(dimensions(3,4)); // The "dimensions" function takes up to 7 arguments
Matrix N(M.dimensions()); // Make N the same size as M

In the remaining code examples it will be assumed that using namespace adept has already been called. When
new memory is needed, the Array object creates a Storage object that contains the memory needed, and stores
pointers to both the St orage object and the start of the data. By default the data are accessed in C-style row-major
order (i.e. the final index corresponds to the array dimension that varies most rapidly in memory). However, this is
flexible since in addition to storing the length of each of its n dimensions, a rank-n Array also stores n “offsets”
that define the separation of elements in memory in each dimension. Thus, a 3-by-4 matrix with row-major storage
would store offsets of (4,1). The same size matrix would use column-major storage simply by storing offsets of
(1,3). To make new arrays use column-major storage, call the following function:

set_array_row_major_order (false);

Note that this does not change the storage of any existing objects. Note also that when array expressions are
evaluated, the data are requested in row-major order, so the use of column-major arrays will incur a performance
penalty.
An Array may also be constructed such that it immediately contains data:
Vector v = M(__,

Vector v(M(__,0)); // Has exactly the same effect as the previous example
Matrix N = log(M); // Initialize with the size and values of a mathematical expression

0); // Link to a existing array, 1in this case the first column of M

It can be seen from the constructors involving Vectors that an Array can be configured to “link” to part of an
existing Array, and modifications to the numbers in one will be seen by the other. This is a very useful feature as
it allows slices of an array to be passed to functions and modified; see section 3.4. Note that the array or sub-array
being linked to must be of the same rank, type and activeness as the linking array. Internally, linking is achieved
by both the arrays pointing to the same St orage object, which itself contains a reference count of the number of
arrays pointing to it. When an Array is destructed the reference count is reduced by one and only if it falls to zero
will the data get deallocated. This ensures that if the Array being linked to goes out of scope, the linking Array
will “steal” the data.
You can also make an Array point to data not held in a Storage object, for example in a function whose
interface is only in terms of intrinsic C types:
double my_norm2 (int n, doublex ptr) {
Vector x (ptr, dimensions(n)); // Create a Vector pointing to existing data

return norm2 (x) ; // Use Adept’s L2-norm function

}

The Vector in this example can be used in the same way as any other array, but relies on the existing data not
being deallocated for the lifetime of the vector.
After it has been constructed, an Array can be resized, relinked or cleared completely as follows:

M.resize (5,2); // Works up to 7 dimensions

M.resize (dimension(5,2)); // As above

N.resize (M.dimensions()); // Resize N to be the same size as M

v.link (M(end-1,__)); // Size of v set to that of the argument and link to data

v >>= M(end-1,__); // Convenient syntax for linking, similar to Fortran’s "->"
M.clear(); // Returns array to original empty state

The member functions resize and clear unlink from any existing data, which involves deallocation if no other
array is pointing to the same data. If the 1ink function, or the alternative “>>=" syntax, is applied with a non-
empty array on the left-hand-side then the existing data will be quietly cleared before linking to the new data. Note
that if you assign one array to another (e.g. N=M), then they must be of the same size; if they are not then you should
clear the left-hand-side first. By default, resized arrays are row-major, unless set _array_-row.major (false) has
been called. To explicitly specify the ordering, you may use the resize_row.major or resize_column.major
member functions in place of resize.

C++11 only

3.2. The Array class 27

The Array class implements a number of member functions for inquiring about its properties:
size () Returns the total number of elements, i.e. the product of the lengths of each of the dimensions.
dimension (i) Returns the length of dimension i.
offset (i) Returns the separation in memory of elements along dimension i.

gradient_index () For active arrays, returns the gradient index of the first element of the array, which is always
positive; for inactive arrays it returns a negative number.

empty () Returns true if the array is in the empty state, or false otherwise.

dimensions () Returns a object listing the extent of each dimension in the Array, useful for resizing other
arrays. The object is actually of type ExpressionSize<int Rank> (Where Rank is the rank of the array),
a thin wrapper for a simple int [Rank] C-array, although it is rare to need to use it explicitly.

offset () Returns an object (also of type ExpressionSize<int Rank>) describing how array indices are
translated into memory offsets.

An Array may be filled using the << operator for the first element followed by either the << or , operators for
subsequent elements:

Vector v (4);
v << 1 << 2 << 3 << 4; // Fill the four elements of v

v << 1, 2, 3, 4; // Same behaviour but easier on the eye
v << 1, 2, 3, 4, 5; // Error: v has been overfilled
Matrix M(2,4);
M << 1, 2, 3, 4, // Filling of multi-dimensional arrays
5, &, 7, 8 // automatically moves on to next dimension
M << 1, 2, 3, 4,
v; // v treated as a row vector here

For multidimensional arrays, elements are filled such that the final dimension ticks over fastest (regardless of
whether the array uses row-major storage internally), and new rows are started when a row is complete. Moreover,
other arrays can be part of the list of elements, provided that they fit in. In this context, a rank-1 array is treated
as a row vector. An index_out_of_bounds exception is thrown if an array is overfilled, while an empty_array
exception is thrown if an attempt is made to fill an empty array.

If you compile your code with C++11 features enabled then you can use the “initializer list” feature to fill arrays
using the C-like curly bracket syntax:

Vector v; // Construct an empty vector
v = {1, 2, 3}; // Resize to length 3 and fill
Vector w = {1, 2, 3}; // Construct a vector of length 3 and fill
w = {4.4, 5.5}; // Underfill leads to remaining elements set to zero (as in C)
w = {6, 7, 8, 9}; // Overfill leads to size_mismatch exception being thrown
Matrix M = {{1, 2, 3}, // Multi-dimensional arrays use nested curly brackets;

{4, 5}}; // ...underfill again leads to remaining elements set to zero

Another convenient property of this syntax is that temporary arrays with explicit values can be used in expres-

sions:

v = w *x Vector{3.0, 4.2, 5.1};

When interfacing with other libraries, direct access to the data is often required. The Array class provides the
following member functions:

data () Returns a pointer to the first element in the array, i.e. the element found by indexing all the dimensions
of the array with zero. It is up to the caller to understand the layout of the data in memory and not to stray
outside. Remember that an array may be strided and the stride may even be negative so that the data returned
from increasing indices are actually from earlier memory addresses. Note that a double-precision active

3.3. Operators and mathematical functions 28

array is not stored as an array of adouble objects, but as an array of double data and a single gradient
index for the first element. Thus the pointer returned by data () will point to the underlying inactive data.
In contexts where the Array object is const, a const pointer will be returned. Note that in a multi-
dimensional array, successive array dimensions are not guaranteed to be contiguous in memory since it is
sometimes advantageous for vectorization for Adept to pad the rows to an alignment boundary. You can use
the output of the of fset () member function to determine the spacing of the elements in each dimension.

const _data() It is sometimes convenient to specify explicitly that read-only access is required, in which case
you can use const._data () to return a const pointer to the first element in the array.
3.3 Operators and mathematical functions

The operators and mathematical functions listed in section 2.1 have been overloaded so that they work exactly as
you would expect. Consider this example:

floatVector a(5); // Inactive single-precision vector
aVector b(5), c(5); // Active vectors

aReal d; // An active scalar

// ... other code manipulating a-d ...

b =2.0; // Set all elements of b to a scalar value

c += 5.0*xa + sin(b)/d; // Add the right-hand-side to c

The penultimate illustrates that all elements of an Array can be set to the same value, although note that this will
only work if the array is not in the empty state. The final line illustrates how terms with different rank, type and
activeness can participate in the same expression. Scalars and arrays can participate in the same expression on the
right-hand-side of a statement provided that the arrays have the same size as the array on the left-hand-side. Objects
of different type (in this case single and double precision) can be combined in a mathematical operation, and the
type of that operation will be the larger (higher precision) of the two types. If active and inactive objects participate
in an expression then the left-hand-side must also be active. Expression templates ensure that no temporary arrays
need to be created to store the output of intermediate parts of the expression. The functions max and min behave
just like binary operators (such as + and «) in this regard, as shown by the following:

c = max(a,b); // Element-wise comparison of a and b
c = min(a,3.0); // Return minimum of each element of a and 3
The examples so far have floating-point results, but some operators (e.g. “==") and some functions (e.g. isinf)

take floating-point arguments and return a boolean. The Adept versions take floating-point array expressions as
arguments and return bool expressions of the same rank and size. Finally, the Adept versions of the operators !,
| | and && take a bool expression as arguments and return a bool expression of the same size and rank.

3.4 Array slicing

This section concerns the many ways that sub-parts of an Array can be extracted to produce an object that can
be used as an lvalue; that is, if the object is modified then it will modify part of the original Array. It should be
stressed that none of these methods results in any rearrangement of data in memory, so they should be efficient.

The first way this can be done is via the function-call and member-access operators (i.e. operator () and
operator[], respectively) of the Array. In the case of the function-call operator, the same number of arguments
as the rank of the array must be provided, where each argument states how its corresponding dimension should be
treated. The nature of the resulting object depends on the type of all of the arguments in a way that is similar to
how Fortran arrays behave, although note that array indices always start at 0. The four different behaviours are as
follows:

Extract single value. If every argument is an integer scalar or scalar expression, then a reference to a single
element of the array will be extracted. If an argument is an integer expression containing end, then end will
be interpretted to be the index to the final element of that dimension (a feature borrowed from Matlab). If

3.4. Array slicing 29

the array is active then the returned object will be of a special “active reference” type that can be used as
an lvalue and ensures that any expressions making use of this element can be differentiated. Now for some
examples:

aMatrix A (4,3);

aReal x A(l,1); // Copy element at second row and second column into x

A(end-1,1) %= 2.0; // Double the element in the penultimate column and 2nd row of A
A(3) = 4.0; // Error: number of indices does not match number of dimensions

Extract regular subarray. If every argument is either (i) an integer scalar or scalar expression, or (ii) a regular
range of indices, and there is at least one of (ii), then an Array object will be returned of the same type
and activeness as the original. However, for each argument of type (i), the rank of the returned array will be
one less than that of the original. There are three ways to express a regular range of indices: “__” represents
all indices of a particular dimension, range (a, b) represents a contiguous range of indices between a and
b (equivalent to a:b in Fortran and Matlab), and stride (a, b, c) represents a regular range of indices
between a and b with spacing c (equivalent to a:b: c in Fortran and a:c:b in Matlab). Note that a, b and
c may be scalar expressions containing end, but ¢ must not be zero although it can be negative to indicate
a reversed ordering. The rank of the returned array is known at compile time; thus if range arguments are
found at run-time to contain only one element (e.g. range (1, 1)) then the dimension being referred to will
be not be removed in the returned array but will remain as a singleton dimension. This behaviour is the same
as indexing an array dimension with 1: 1 in Fortran. Now for some examples:

v (range (1,end-1)) // Subset of vector v that excludes 1st & last points

A(0,stride(end,0,-1)) // First row of A as a vector treated in reverse order
A(range(0,0),stride(0,0,1)) // A 1-by-1 matrix containing the first element of A

Extract irregular subarray. If an array is indexed as in either of the two methods above, except that one or more
dimensions is instead indexed using a rank-1 Array of integers, then the result is a special “indexed-array”
type that stores how each dimension is indexed. If it then participates either on the left- or right-hand-side of
a mathematical expression then when an element is requested, the indices will be queried to map the request
to obtain the correct element from the original array. This is much less efficient than using regular ranges of
indices as above. It also means that if an indexed array is passed to a function expecting an object of type
Array, then it will first be converted to an Array and any modifications performed within the function will
not be passed back to the original array. For example:

intVector index(3);

index << 2, 3, 5;

Array A(4,4);

A(0,index) = 2.0; // Set irregularly spaced elements of the first row of A

Slice leading dimension. In C, an element is extracted from a two-dimensional array using A[i] [3], and A[i]
returns a pointer to a single row of A, where i and ; are integers. To enable similar functionality, if A is an
Adept matrix then A[i] indexes the leading dimension by integer i returning an array of rank one less than

the original. This is equivalent to A (i, __) . Furthermore, A[1] [j] will return an individual element as in C,
but it should be stressed that A (i, j) is more efficient since it does not involve the creation of intermediate
arrays.

There are a few other ways to produce lvalues that consist of a subset or a reordering of an array. They are imple-
mented as member functions of the Array class, in order to distinguish from non-member functions that produce
a copy of the data and therefore cannot be usefully used as lvalues. For example, A.T () and transpose (A) both
return the transpose of matrix a, but the former is faster since it does not make a copy of the original data, while the
latter is more flexible since it can be applied to array expressions (e.g. transpose (A*B)). The member functions
available are:

subset (int ibegin0O, int iend0O, ...) This function returns a contiguous subset of an array as an array of
the same rank that points to the original data. It takes twice as many arguments as the array has dimensions,

3.5. Passing arrays to and from functions 30

with each pair of arguments representing the indices to the first and last element to include from a particular
dimension. Exactly the same result can be obtained using range but the subset form is more concise. For
example, for a matrix M, M. subset (1,5, 3, 10) is equivalent to M (range (1, 5), range (3,10)).

T () This function returns the transpose of a rank-2 array (a matrix). The returned array points to the same data
but with its dimensions reversed. A compile-time error occurs if this function is used on an array with rank
other than 2. Currently Adept doesn’t allow the transpose of a rank-1 array (a vector), since vectors are not
intended to have an intrinsic orientation. When orientation matters, such as in matrix multiplication, the
intended orientation may be inferred from the context or specified explicitly.

permute (int i0, int il, ...) This function is the generalization of the transpose for multi-dimensional
arrays: it returns an array of the same rank as the original but with the dimensions rearranged according to
the arguments. There must be the same number of arguments as there are dimensions, and each dimension
(starting at 0) must be provided once only. The returned array is linked to the original; the permutation is
achieved simply by rearranging the list of dimensions and the list of “offsets” (the separation in memory of
elements along each dimension individually).

diagmatrix () When this function is applied to a rank-1 Array of length n, it returns an n-by-n diagonal matrix
(specifically a DiagMat rix; see section 3.10) that points to the data from the rank-1 array along its diagonal.

diag.vector () When this function is applied to a rank-2 Array with equally sized dimensions, it returns a rank-
1 array pointing to the data along its diagonals. An invalid.-operation exception is thrown if applied to
a non-square matrix, and a compile-time error if applied to an array of rank other than 2.

diag vector (int i) When applied to a square rank-2 n-by-n Array, this returns a rank-1 array of length
n — abs(i) pointing to the ith superdiagonal of the square matrix, or the —ith subdiagonal if i is negative.
An invalid_exception exception occurs if applied to a non-square matrix, and a compile-time error if
applied to an array of rank other than 2.

submatrix on diagonal (int ibegin,int iend) When applied to a square rank-2 ar-
ray, this function returns a square matrix that shares part of the diagonal of the origi-
nal matrix. Thus A.submatrix.on_diagonal (int ibegin,int iend) is equivalent to
A(range (ibegin, iend), range (ibegin, iend)). Its purpose is to provide a subsetting facility
for symmetric, triangular and band-diagonal matrices (see section 3.10) for which general array indexing is
not available. If applied to a non-square matrix, an invalid-operation exception will be thrown.

reshape (int i0, int il...) Only applicable to an Array of rank 1, this returns a multi-dimensional array
whose dimensions are given by the arguments to the function. Between 2 and 7 dimensions are possible. If
the arguments are such that the total size of the returned array would not match the length of the vector, an
invalid_-dimension exception is thrown.

3.5 Passing arrays to and from functions

When writing functions taking array arguments, there are three different ways to do it depending on the extent
to which the function needs to be able to modify the array. In the case of constant array arguments, a constant
reference should be used; for example:

Real 13norm(const Vectors v) { // Function returning the L3-norm of a vector

return cbrt (sum(v*v*v)) ;

}

Vector w(3); w << 1.0, 2.0, 3.0; // Create a test vector
Real ansl = 13norm(w); // Named vector argument
Real ans2 = 13norm(w(range(0,1))); // Temporary vector argument

Real ans3 = 13norm(2.0x*w); // Expression implicitly converted to temporary vector

3.5. Passing arrays to and from functions 31

This function works with all three types of argument. The last example illustrates that when an inactive rank-1
expression is passed to the function, it is evaluated and the result placed in a temporary vector that is passed to the
function.
At the other extreme, we may wish to create a function that modifies an array argument, including the possibility
of changing its size; for example:
void resize_and_zero(int n, Vectors v) { // A rather pointless function...
v.resize(n); v = 0.0;

}

Vector w(4);

resize_and_zero (2,w); // Results in w={0.0, 0.0}
resize_and_zero (2,w(range(0,2))); // Compile error: argument 1is temporary
resize_and_zero(2,2.0+*w); // Compile error: argument 1is not an lvalue

In this case, due to the C++ rule that a non-constant reference cannot bind to a temporary object, the function can
only take a non-temporary Vector as an argument. This is fair enough; it would not make sense to resize the
subset of an array, or an expression. However, it is very common to want to pass a subset of an array to a function
and for the function to modify the values of the array, but not to resize it. In Adept this is achieved as follows:
void square_in_place (Vector v) {
vV ox= V;

}
Vector w(3); w << 2.0, 3.0, 5.0;

square_in_place (w); // Results in w={4.0, 9.0, 25.0}
square_in_place (w(range(0,1))); // Results in w={4.0, 9.0, 5.0}
square_in_place (2.0xw) ; // No effect on w

Even though the vector has been passed by value, the Vector copy constructor performs a “shallow copy”,
which means that little more than the array dimensions and a pointer to the data are copied. Therefore, in the first
two examples above the vector v inside the function points to data in w, and can therefore modify w. By contrast,
when an expression is passed to the function, a new Vector is created to hold the result of the expression, and
when this is modified inside the function it does not affect the data in the calling routine.
The fact that Array copy constructors perform shallow copies also improves the efficiency of functions that
return arrays such as the following:
Matrix square (const Matrix& in)
Matrix out = in*in; // Create an matrix containing the result of in*in

return out;

}
Matrix A(100,100); // Allocate memory for "A"
Matrix B = square(d); // Copy constructor: shallow copy of "out" into "B"

At the return statement, matrix out is received by the copy constructor of matrix B, so a shallow copy is per-
formed. This means that the description of matrix out is copied to B, including a pointer to Storage object
containing both the data and a count of the number of references to it; this counter is increased by one. Matrix out
is then destructed, and the counter is immediately reduced by one. The net result is that B has “stolen” the data in
the matrix from out without it having been copied, thus avoiding unnecessary allocation of memory on the heap
followed by copying and deallocation.

The shallow-copy implementation leads to behaviour that users may not be expecting. If an array is initialized
from another array in either of the following two ways:

Matrix M(3,4);

Matrix A (M); // Call copy constructor
Matrix B = M; // Call copy constructor

then the result is that A, B and M share the same data, rather than a copy being made. To make a deep copy, it is
necessary to do the following:
Matrix M(3,4);

Matrix A; // Create empty matrix
A = M; // Call assignment operator for deep copy

C++11 only

3.6. Array reduction operations 32

This is annoying, but the alternative is that there would be no clean way to pass a subset of an array to a function
that then modifies its values. The same behaviour is implemented in the Blitz++ array class (Veldhuizen, 1995).

It should be noted that with the introduction of “move semantics” in the C++11 standard, the it is possible to
detect when an array returned from a function is about to be destructed, and therefore invoke a move constructor
that implements a shallow copy. This negates one of the two reasons from making the copy constructor execute
only a shallow copy. But it does not help in passing array subsets to functions, unless two versions of every function
were created, one accepting an Ivalue reference (Arrays) and the other accepting an rvalue reference (Arrayss),
which is hardly practical.

If you compile your code with C++11 features enabled then move semantics can sometimes make assignment
more efficient. Consider code calling the square function above:

Matrix A(10,10), B(10,10);

B = square(A); // Move assignment operator performs shallow copy
Matrix C(B); // B and C now share the same data
B = square(A); // Move assignment operator performs deep copy

Both assignments are to temporary objects about to be destructed, so the move assignment operator is called.
This operator checks how many references there are to the data in B. In the first case there is only one reference,
so the data in B can safely be discarded and a shallow copy (a “move”) of the data in the temporary is performed.
In the second case there are two references, so a deep copy must be performed in order that C sees the change

in B.

3.6 Array reduction operations

A family of functions return a result that is reduced in rank compared to their argument, and operate in the same
way as Fortran functions of the same name. Consider the sum function, which can be used either to sum all the
elements in an array expression and return a scalar, or to sum elements along the dimension specified in the second
argument and return an array whose rank is one less than the first argument:

Array A(3,4);

Real x = sum(A); // Sum all elements of matrix A
Vector v = sum(A,1l); // Sum along the row dimension returning a vector of length 3

Functions that are used in the same way are mean, product, minval, maxval and norm2 (the square-root of
the sum of the squares of each element). Note the difference between maxval and max: the behaviour of max
is outlined in section 3.3. Three further functions operate in the same way but on boolean arrays: all returns
true only if all elements are t rue, any returns t rue if any element is t rue (and false otherwise), while count
returns the number of t rue elements. Each of these can work on an individual dimension as with sum and friends.

A further function, dot product (a, b), takes two arguments that must be rank-1 arrays of the same length and
returns the dot product. This is essentially the same as sum (axb) .

3.7 Array expansion operations

The function outer_product (x, y) returns the outer product of two rank-1 expressions; if x and y are interpreted
as column vectors then xy” is returned. If outer_product is used in an expression then an intermediate matrix
object is not created to store it.

The function spread<dim> (A, n) returns an array that replicates the A array n times along dimension dim. The
returned array has a rank one larger than a whose dimension dim is n and the remaining dimensions are the same
as those of A. It is essentially the same as the Fortran function of the same name, but dim is provided as a template
arguent since performance is improved if this is known at compile time. The following illustrates spread for an
argument of rank 1:

Vector v(3); v << 1, 2, 3;
Matrix MO = spread<0>(v,2);

// M1 contains {{1, 2, 3},
// {1, 2, 3}}

3.8. Conditional operations 33

Matrix M1 = spread<l>(v,2);
// M2 contains {{1, 1},

// {2, 2},
// {3, 3}}
Note that spread<l>(x,y.size())xspread<0>(y,x.size()) gives the same result as

outer_product (x,vy).

3.8 Conditional operations

There are two main ways to perform an operation on an array depending on the result of a boolean expression. The
first is similar to the Fortran where construct:

Array A(3,4);

Array B(3,4);

A.where (B > 0.0) = 2.0 x B; // Only assign to A if B > 0
A.where(!isnan(B)) = either_or(-B, 0.0); // Read from either one expression or the other

In the first example, A is only assigned if a condition is met, and therefore A must be of the same size and rank of
the boolean expression. In the second example A is filled with elements from the first argument of either_or if the
boolean expression is t rue, or from the second argument otherwise; if A is empty then it will be resized to the size
of the boolean expression. In both cases, the expressions on the right-hand-side may be scalars or array expressions
of the same size as the boolean expression. Equivalent expressions are possible replacing the assignment operator
with the +=, —=, »= and /= operators, in which case A must already be the same size as the boolean expression.

An alternative approach that works with only vectors uses the £ind function. This is similar to the equiva-
lent Matlab function and returns an IndexVector (a vector of integers of sufficient precision to index an array)
containing indices to the true elements of the vector:

Vector v (10), w(10);

v(find(v > 5.0)) = 3.0;
IndexVector index = find(v > 5.0);
v (index) = 2.0 » u(index);

This will work if no t rue elements are found: f£ind will return an empty array, and when v is indexed by an empty
vector, no action will be taken. In general, £ind is less efficient than where.

3.9 Fixed-size arrays

The size of the Array class is dynamic, which is somewhat sub-optimal for small arrays whose dimensions are
known at compile time. Adept provides an alternative class template for an array whose size is known at compile
time and whose data are stored on the stack. It has the following declaration:
namespace adept {
template <typename Type, bool IsActive, int Dim0O, int Diml = 0, ...>

class FixedArray;
}

The type (e.g. double) and activeness are specified by the first two template arguments, while the remaining
template arguments provide the size of the dimensions, up to 7. Only as many sizes need to be specified as there
are dimensions. A user working with arrays of a particular size could use typedef to provide convenient names;
for example:

typedef FixedArray<double, false, 4> Vector4;

typedef FixedArray<double, false, 4, 4> Matrix44;

typedef FixedArray<double, true, 4> aVector4;
typedef FixedArray<double, true, 4,4> aMatrix44;

In the adept namespace, Adept defines Vector2, Vector3, Matrix22, Matrix33 and their active counterparts.
Fixed arrays have all the same capabilities as dynamic arrays, with a few exceptions:

¢ Since their size is fixed, there are no member functions resize, clear or in_place_transpose.

3.10. Special square matrices 34

* Since for the lifetime of the object it is associated with data on the stack, it cannot link to other data. This
means that there is no member function 1ink, and also if it is passed by value to a function then the contents
of the array will be copied, rather than the behaviour of the Array class where the receiving function links
to the original data.

All the same slicing operations are available as discussed in section 3.4, and they return the same types when
applied to fixed arrays as they do when applied to dynamic arrays. Thus most operations return an Array object
that links to a subset of the data within the FixedArray object.

3.10 Special square matrices

Adept offers several special types of square matrix that can participate in array expressions. They are more efficient
than Arrays in certain operations such as matrix multiplication and assignment, but less efficient in operations such
as accessing individual elements. All use an internal storage scheme compatible with BLAS (Basic Linear Algebra
Subprograms). All are specializations of the SpecialMatrix class template, which has the following declaration:
namespace adept ({
template <typename Type, class Engine, bool IsActive = false>

class SpecialMatrix;

}

The first template argument is the numerical type, the second provides the functionality specific to the type of
matrix being simulated, and the third states whether the matrix participates in the differentiation of an algorithm.
The specific types of special matrix are as follows:

Square matrices. SquareMatrix provides a dense square matrix of type Real with aSquareMatrix its active
counterpart. Its functionality is similar to a rank-2 Array, except that its dimensions are always equal and
the data along its fastest varying dimension are always contiguous in memory, which may make it faster than
Array in some instances.

Symmetric matrices. SymmMatrix provides a symmetric matrix of type Real, and aSymmMatrix is its active
equivalent. Internally this type uses row-major unpacked storage with the data held in the lower triangle of
the array and zeros in the upper triangle (equivalent to column-major storage with data in the upper triangle).
If the oposite configuration is required then it is available by specifying different template arguments to the
SpecialMatrix class template. Note that with normal access methods, the storage scheme is opaque to the
user; for example, s (1,2)=2.0and S (2, 1) =2.0 have the same effect.

_ 9

Triangular matrices. LowerMatrix and UpperMatrix (and their active equivalents prefixed by “a”) provide
triangular matrices of type Real. Internally they use row-major unpacked storage, although column-major
storage is available by specifying different template arguments to the SpecialMatrix class template.

Band diagonal matrices. DiagMatrix, TridiagMatrix and PentadiagMatrix provide diagonal, tridiagonal
and pentadiagonal Real matrices, respectively (with their active equivalents prefixed by “a”). Internally,
row-major BLAS-type band storage is used such that an n-by-n tridiagonal matrix stores 3n rather than n?
elements. Adept supports arbitrary numbers of sub-diagonals and super-diagonals, accessible by specifying

different template arguments to the SpecialMatrix class template.

A SpecialMatrix can be constructed and resized as for Arrays (see section 3.2), with the following additions:
SymmMatrix S(4); // Initialize a 4-by—-4 symmetric matrix
S.resize(5); // Resize to a 5-by-5 matrix

These are applicable to all types of SpecialMatrix.

In terms of array indexing and slicing, the member functions T, diag and diag_submatrix described in section
3.4 are all available, but if you index a SpecialMatrix with S(a,b) then a and b must be scalars or scalar
expressions. For triangular or band-diagonal matrices, if the requested element is one of the zero parts of the
matrix then it can only be used as an rvalue in an expression. If you wish to extract arbitrary subarrays from a
SpecialMatrix then it must first be converted to a Mat rix:

3.11. Matrix multiplication 35

SymmMatrix S(6);

intVector index(3);

index << 2, 3, 5;

Matrix M = Matrix (S) (index,stride (0,4,2));

3.11 Matrix multiplication

Matrix multiplication may be invoked in two equivalent ways: using the matmul function or the “xx” pseudo-
operator. Following Fortran, the two arguments may be either rank-1 or rank-2, but at least one argument must be
of rank-2. The orientation of any rank-1 argument is inferred from whether it is the first or second argument, as
shown here:

Matrix A(3,5), B(5,3), C;

Vector v (5), w;

C = matmul (A,B); // Matrix-matrix multiplication: return a 3x3 matrix

matmul (v,B); // Interpret v as a row vector: return a vector of length 3
w = matmul (A,v); // Interpret v as a column vector: return a vector of length 3

w

In this way it is never necessary to transpose a vector; the appropriate orientation to use is inferred from the context.
You may find it clearer to use “x " for matrix multiplication as illustrated here:"

Matrix A(3,5), B;

SymmMatrix S (5); // 5-by-5 symmetric matrix

Vector c, x(5);

c = A xx log(S) *x* x; // Returns a vector of length 3

¢ = matmul (matmul (A,log(S)),x); // Equivalent to the previous line but using matmul
c = A xx (log(S) ** x); // As the previous example but more efficient

B =2.0 xS xx A.T(); // Returns a 5-by-3 matrix

B =2.0 xS xx A; // Run-time error: inner dimensions don’t match

The “x»” pseudo-operator has been implemented in Adept by overloading the dereference operator such that “xa”
returns a special type when applied to array expressions, and overloading the multiply operator to perform matrix
multiplication when one of these types is on the right-hand-side. This means that == has the same precedence
as ordinary multiplication, and both will be applied in order of left to right. Thus, in the first example above,
matrix-matrix multiplication is performed followed by matrix-vector multiplication. The second example shows
how to make this more efficient with parentheses to specify that the rightmost matrix multiplication should be
applied first, leading to two matrix-vector multiplications. The final example shows an expression that would
fail at runtime with an inner_dimension._mismatch exception due to the matrix multiplication being applied to
matrices whose inner dimensions do not match.

You cannot use matmul or “x«” for vector-vector multiplication, since it is ambiguous whether you require the
inner product (dot product) or the outer product. Therefore you must explicitly call the function dot_product
(section 3.6) or outer_product (section 3.7).

In order to get the best performance, Adept does not use expression templates for matrix multiplication but rather
calls the appropriate level-2 BLAS function for matrix-vector multiplication and level-3 BLAS function for matrix-
matrix multiplication. For matrix multiplication involving active vectors and matrices, Adept first uses BLAS to
perform the matrix multiplication and then stores the equivalent differential statements. There are therefore a few
factors that users should be aware of in order to get the best performance:

* If an array expression rather than an array is provided as an argument to matrix multiplication, it will first
be converted to an Array of the same rank. Therefore, if the same expression is used more than once
in a sequence of matrix multiplications, better performance will be obtained by precomputing the array
expression and storing it in a temporary matrix:

A drawback of the * % interface with the orientation of vector arguments being inferred is that in an expression like A *v* *B (where A
and B are matrices and Vv is a vector), Vv is interpreted as a column vector in A* x v, which returns a column vector result, but this result is then
implicitly transposed when it is used as the left-hand argument of the matrix multiplication with B. Moreover, the order of precedence affects
the result, since this expression will not give the same answer as Ax x (V**B) .

3.12. Linear algebra 36

Matrix A(5,5), B(5,5), C(5,5), D(5,5)
// Slow implementation:
C = transpose (2.0xA%xB) xx (2.0xA%B);
D = (2.0%AxB) *xx C;
// Faster implementation:
{
Matrix tmp = 2.0%AxB;
C = tmp.T() ** tmp;
D = tmp ** C;
} // "tmp" goes out of scope here

o If the left-hand argument of a matrix multiplication is a symmetric, triangular or band matrix then a specialist
BLAS function will be used that is faster than the one for general dense matrices. Adept may not be able to
tell if the result of an array expression is symmetric, triangular or has a band structure, and so may not call
the most efficient BLAS function. The user can help as follows:

SymmetricMatrix S(5,5)
Matrix A(5,5), B(5,5)

B = (2.0xexp(S)) ** A; // Slower
B = SymmMatrix (2.0xexp(S)) =** A; // Faster

* BLAS requires that the fastest-varying dimension of input matrices are contiguous and increasing. This is
always the case for the special square matrices described in section 3.10, but not necessarily for a Matrix
or an aMatrix, which are particular cases of the general Array type. If the fastest-varying dimension of
such a matrix is not contiguous and increasing then Adept will copy it to a temporary matrix before invoking
matrix multiplications, as in the following example:

Matrix A(5,5), B, C(5,5);
B.link (A(__, stride(end,1,-1)); // Fastest varying dim is contiguous but decreasing

C = A «x A; // Matrix multiplication applied directly with A
C =B % B; // Adept will copy B to a temporary matrix before multiplication

An additional member function to mention in this section is in_place_transpose (), which is only applicable
to matrices. It transposes the matrix by swapping the dimensions and the offsets to each dimension, but leaving
the actual data untouched. This means that a matrix with row-major storage will be changed to column-major, and
vice versa.

Adept can differentiate expressions involving matrix multiplcation, but this is far from optimal in Adept version
2.0, for two reasons. Firstly, only differentiation of dense matrices has been implemented, so when matrix multi-
plication is applied to active “special matrices” (symmetric, band, upper-triangular and lower-triangular matrices),
they are first copied to a dense matrix. Secondly, the Adept stack format can currently only store differential state-
ments for scalar expressions, which for matrix multiplication leads to lots of repeated values on the stack. A future
version of Adept will redesign the stack to allow matrices to be stored in it; this will be much faster and much less
memory-hungry.

3.12 Linear algebra

Adept provides the functions solve and inv to solve systems of linear equations and to invert a matrix, respec-
tively, which themselves call the most appropriate function from LAPACK.
Matrix A(5,5), Ainv(5,5), X(5,5), B(5,5);

SymmMatrix S (5), Sinv(5);
Vector x(5), b(5);

Ainv = inv(A); // Invert general square matrices using LU decomposition

Sinv = inv(S); // Invert symmetric matrices using Cholesky decomposition

x = solve (A,Db); // Solve general system of linear equations

X = solve(S,B); // Solve symmetric system of linear equations with matrix right-hand-side

Statements involving solve and inv cannot yet be automatically differentiated. When the Adept stack is re-
designed to hold matrices, this capability will be added.

3.13. Interpolation 37

3.13 Interpolation

Adept supports linear and nearest-neighbour interpolation, in one, two and three dimensions via the interp,
interp2d and interp3d functions. The example below shows how these functions are called and the size of
the arguments, but does not fill the arguments with actual data (see the test program test/test_interp.cpp for
complete usage):

// Size of each dimension

int nx, ny, nz;

// Coordinate vectors of each dimension (must be monotonic)
Vector x(nx), y(ny), z(nz);

// Arrays to be interpolated

Vector Al (nx);

Matrix A2 (ny,nx);

Array3D A3 (nz,ny,nx);

// Number of points required

int ni;

// Locations of these points

Vector xi(ni), yi(ni), zi(ni);

// Output vector

Vector v (ni);

// Linear interpolation (default)

v = interp(x,Al,xi);

v = interp(x,Al,xi,ADEPT_INTERPOLATE_LINEAR); // Specifying scheme explicitly
v = interp2d(y,x,A2,yi,xi);

v = interp3d(z,y,x,A3,zi,yi,xi);

// Nearest-neighbour interpolation

v = interp(x,Al,xi,ADEPT_INTERPOLATE_NEAREST) ;

v = interp2d(y,x,A2,yi,xi, ADEPT_INTERPOLATE_NEAREST) ;

v = interp3d(z,y,x,A3,zi,yi,xi, ADEPT_INTERPOLATE_NEAREST) ;

Each interpolation function takes coordinate vectors describing each dimension of the interpolation array in the
order of the dimensions of that array. In the two dimensional case, since matrices are indexed first by row (y axis)
then column (x axis), this is the order they are shown here.

The interpolation arrays (A1, A2 and A3 here) may have more dimensions than shown above; for each additional
dimension, a further dimension is added to the output array, and effectively multiple arrays are interpolated at
once. In this case, the coordinate vectors still refer to the first one, two or three dimensions of this array and the
remaining (more rapidly varying in memory) dimensions come after.

As can be seen from the listing above, an optional argument after the array arguments specifies the interpolation
scheme to use, but this argument can also be used to specify the extrapolation policy to apply for requested points
that lie outside of the interpolation array by using a bitwise-OR with one of the following:

ADEPT EXTRAPOLATE DEFAULT Use the default extrapolation policy associated with the interpolation scheme
(see below). Obviously this can be omitted.

ADEPT EXTRAPOLATE LINEAR Linear extrapolation; this is the default for linear interpolation, but is not available
with nearest-neighbour interpolation.

ADEPT EXTRAPOLATE CLAMP Clamp the returned value at the nearest valid point in the interpolation array; this is
the default for nearest-neighbour interpolation.

ADEPT EXTRAPOLATE CONSTANT Set outliers to a constant value provided by a further optional argument to the
function, or NaN if no additional argument is provided.

For example:

// Explicit selection of default behaviour (linear interpolation & extrapolation)
v = interp(x,Al,xi, ADEPT_INTERPOLATE_LINEAR|ADEPT_EXTRAPOLATE_DEFAULT) ;

// Nearest-neighbour interpolation with clamped extrapolation

v = interp(x,Al,xi, ADEPT_INTERPOLATE_NEAREST |ADEPT_EXTRAPOLATE_CLAMP) ;

// Nearest-neighbour interpolation, outliers set to NaN

v = interp(x,Al,xi, ADEPT_EXTRAPOLATE_NEAREST |ADEPT_EXTRAPOLATE_CONSTANT) ;

3.14. Bounds and alias checking 38

// Linear interpolation, outliers set to zero

v =

interp(x,Al, xi, ADEPT_EXTRAPOLATE_CONSTANT, 0.0);

3.14 Bounds and alias checking

When encountering an array or active expression, Adept performs several checks to test the validity of the expres-
sion both at compile time and at runtime:

Activeness check. An expression in which an active expression is assigned to an inactive array will fail to compile.

Rank check. An expression will fail to compile if the rank of the array on the left-hand-side of the

c_9

operator
(or the operators “+=", “x=", etc.) does not match the rank of the array expression on the right-hand-side.
However, a scalar (rank-0) expression can be assigned to an array of any rank; its value will be assigned to
all elements of the array. Compile-time rank checks are also performed for each binary operation (binary
operators such as “+” and binary functions such as pow) making up an array expression: compilation will
fail if the two arguments do not have the same rank and neither is of rank 0.

Dimension check. When a binary operation is applied to two array expressions of rank n then Adept checks at

run-time that each of the n dimensions has the same length. Otherwise, a size mismatch exception is
thrown.

Alias check. By default, Adept checks to see whether the memory referenced in the array object on the left-hand-

side of a statement overlaps with the memory referenced by any of the objects on the right-hand-side, as in
this example of a shift-right operation:

Vector v (6);
v(range(l,end)) = v(range(0,end-1));

In order to prevent the right-hand-side changing during the operation, Adept copies the expression on the
right-hand-side to a temporary array and then assigns the left-hand-side array to this temporary, which is
equivalent to the following:
{
Vector tmp;
tmp = v (range (0,end-1));
v(range(l,end)) = tmp;
} // tmp goes out of scope here

However, for speed Adept does not check to see whether individual memory locations are shared; rather
the start and end memory locations are checked to see if they overlap. This means that for certain strided
operations, copying to a temporary array is unnecessary. Nor is it necessary if elements of an array will be
accessed in exactly the same order on the left-hand-side as the right-hand-side. If the user is sure that alias
checking is not necessary then he or she can override alias checking for part or all of an array expression
using the noalias function, as follows:

v(stride(l,end,2)) = noalias(v(stride(0,end-1,2))); // No overlap between RHS and LHS
v = 1.0 + noalias(exp(Vv)); // LHS & RHS accessed in same order

Note that for speed, alias checking is not performed if the left-hand-side is a FixedArray, since such arrays
can never point to another location and therefore aliasing is less likely to arise. Aliasing is still possible if
one of the terms on the right-hand-side points to the data in the FixedArray on the left. In this case, you can
use the eval function, which takes a non-scalar expression as an argument, and returns an array containing
a copy of the data. For example:

FixedArray<Real, false,3> v = {1.0, 2.0, 3.0}; // C++11 initialization of inactive vector

v = v(stride(end,0,-1)); // Aliasing leads to v = {3.0, 2.0, 3.0}
v = eval (v(stride(end, 0,-1))); // Expected result: v = {3.0, 2.0, 1.0}

C++11 only

3.15. Automatic differentiation capabilities specific to arrays 39

To avoid the overhead of alias checking, you can define the preprocessor variable
ADEPT_NO.ALIAS_CHECKING, but then it is up to the user to identify the statements where aliasing
will occur and use the eval function to ensure the correct behaviour.

Bounds check. If the preprocessor variable ADEPT_BOUNDS_CHECKING is defined then additional run-time checks
will be performed when an array is indexed or sliced using the methods described in section 3.4; if an index
is ount of bounds then a index_out_of_bounds exception will be thrown. This makes indexing and slicing
of arrays slower so would normally only be used for debugging.

3.15 Automatic differentiation capabilities specific to arrays

Section 2.3 described how the get_gradient () member function could be used to extract the gradients from a
scalar adouble object after applying forward- or reverse-mode differentiation. In the same way, gradients may be
extracted from active Array and FixedArray objects, returning an inactive Array of the same rank and size. For
example, to compute the derivative of a norm2 operation, we could do the following:

Stack stack; // Stack to store differential statements
aVector x = {1.0, 2.0, 3.0}; // C++11 initialization

stack.new_recording () ; // Clear any stored differential statements
aReal y = norm2 (x); // Perform operation to be differentiated
y.set_gradient (1.0); // Seed the independent variable
stack.reverse () ; // Reverse-mode differentiation

Vector dy_dx = x.get_gradient (); // Extract vector of derivatives

3.16 Array thread safety

There are numerous ways of obtaining an Array that links to data in another Array object; not only the “>>="link
operator described in section 3.2, but also the various subsetting member functions described in section 3.4, and
even just passing arrays to and from functions. This avoids deep copying and so improves efficiency. In addition
to the new Array pointing to the same data, it also points to the same Storage object, and when a new link is
created, the counter in this object indicating the number of objects pointing to it is incremented. This ensures that
the data will remain provided there is at least one object linking to it. A downside of this model is that if multiple
threads access an array simultaneously, even if just to read it, then the reference counter can become corrupted.
There are two solutions to this problem.
If you are using C++11 then you can define the ADEPT_STORAGE_THREAD_SAFE preprocessor variable, which
makes the reference counter in Storage objects of type std: :atomic<int> and thereby protects all opera-
tions on them by a mutex. This may degrade the efficiency of your code since the mutex will be redundant in
single-threaded code.

Alternatively, we use the capability of arrays to access data not held in a Storage object. The Array and
SpecialMatrix classes have a soft_1ink () member function that returns an object of the same type, size and
activeness, which points to the same data but does not contain a link to the Storage object:

Matrix M(2,2);

// ...enter multi-threaded environment
Matrix N;
N >>= M.soft_link(); // N links to same data as M but without Storage object

Vector v = M.soft_link() (_ ,0); // v links to subset of M but without Storage object

// (recall that the copy constructor is called here)

The linked objects may be used in the same way as any other Array. This is demonstrated in the
test_thread_safe_arrays test program.

3.17 Writing an array to a stream

As you would expect, an array can be written to a stream with the “<<” operator:

3.18. Fortran interoperability 40

Vector v = {1, 2}; // Using C++11 initializer 1lists
Matrix M = {{3, 4}, {5, 6}}; // for convenience

std::cout << v << "\n";

std::cout << M << "\n";

which by default produces

g W =
o BN

You can change the output to use curly brackets to indicate the dimensions of the array as follows:

Vector v = {1, 2};

Matrix M = {{3, 4}, {5, 6}};
adept::set_array_print_style (PRINT_STYLE_CURLY) ;
std::cout << "v = " << v << ";\n";

std::cout << "M = " << M << ";\n";

which produces output that looks like C/C++ code:
v = {1, 2};
M =
{{3, 4},
{5, 6}};

The available print styles for use by set.array print_style are PRINT.STYLE PLAIN (default),

PRINT_STYLE_CURLY, PRINT_STYLE_CSV (comma-separated values) and PRINT_STYLE_MATLAB (matrix order-
ing indicated by Matlab-style semi-colons and square brackets).

3.18 Fortran interoperability

The traditional way to pass arrays between Fortran and C/C++ makes use of the fact that Fortran passes its “explicit-
shape” arrays (the type used since Fortran-77) to and from routines simply as a pointer to the first element of the
array. It is then up to the receiving routine to declare the size of the array correctly. Adept arrays can therefore be
passed to Fortran routines using their data () and const_data () member functions, which return pointers to the
first element of the array.

Since Fortran-90, the language also supports “assumed-shape” arrays, which are very much like Adept’s Array
objects: they contain within them the extent of each array dimension, and may refer to data that are strided (non-
contiguous) in memory. Fortran passes an assumed-shape array to subroutines and functions in the form of a
pointer to its array descriptor (sometimes known as a dope vector), which contains a pointer to the first element
of the array and information on the rank, type, and the extent and stride-in-memory of each dimension.

The Fortran 2018 standard defines an interface to allow assumed-shape arrays to be passed to and from C or C++
functions. Fortran compilers supporting this standard provide a C/C++ header file ISO_Fortran binding.h that
defines the array descriptor as a structure CFI_cdesc-t. The Adepr header file adept_fortran.h provides a
class adept: :FortranArray, a thin wrapper to this structure, that enables an Adept Array object to share its
data with a Fortran array. This is very efficient as only the array descriptor information is copied, not the actual
data in the array. At the time of writing, support for this capability in Fortran compilers is limited.

An crucial point to be aware of in all the examples that follow is that Adept indexes its arrays in row-major order
starting at 0, while Fortran indexes its arrays in column-major order starting (by default) at 1. When arrays are
passed between the two languages, the native array convention is adopted. Therefore, matrix element A (0, 10) in
Adept would be indexed as A (11, 1) in Fortran.

3.18.1 Passing arrays from C++/Adept to Fortran

Suppose we have a Fortran subroutine that takes an integer array and a single-precision array as arguments:

! Define a routine callable with same name in C/C++
subroutine fortran_routine (int_array, flt_array) bind(c)
implicit none

3.18. Fortran interoperability 41

integer (kind=4), intent (inout) :: int_array(:,:) ! Matrix of 4-byte integers
real (kind=4) , intent (inout) :: flt_array(:,:) ! Matrix of 4-byte real numbers
! ——— Body of routine here ——-

end subroutine fortran_routine

The following C++ program demonstrates how Adept arrays can be passed this routine:

#include <adept_fortran.h>
// Declare interface to the routine, turning off C++ name mangling so that it can be linked
// to Fortran
extern "C" void fortran_routine (adept::FortranArray* int_array,
adept: :FortranArrayx flt_array);
int main () {
// Initialize Adept matrices, using shortcuts to the types Array<2,int> and Array<2, float>
adept: :intMatrix int_arr = {{2, 3, 5}, {7, 11, 13}};
adept::floatMatrix flt_arr = {{2.0, 3.0, 5.0}, {7.0, 11.0, 13.0}};
// Convert Adept arrays to Fortran arrays pointing to the same data, and call the routine;
// the conversion to FortranArray pointers is done automatically
fortran_routine (adept: :FortranArray (int_arr),
adept: :FortranArray (flt_arr));
return 0;

}

This will fail to compile if ISO_Fortranbinding.h file is not found. To link the two object files into an exe-
cutable you will need to use your C++ compiler, but include the relevant Fortran library on the command line (e.g.
-lgfortran if you compiled fortran_routine with the GNU Fortran compiler, or -1ifcore if you used the
Intel Fortran compiler).

3.18.2 Passing arrays from Fortran to C++/Adept

We can also pass arrays the other way. Consider the following Fortran program:
program test_interoperability

implicit none

! Define interface to a function implemented in C++

interface
subroutine adept_routine (int_array, flt_array) bind(c)
integer (kind=4), intent (inout) :: int_array(:,:) ! Matrix of 4-byte integers
real (kind=4), intent (inout) :: flt_array(:,:) ! Matrix of 4-byte real numbers

end subroutine adept_routine
end interface
! Body of program starts here
integer (kind=4), allocatable :: imat (:,:)
real (kind=4) , allocatable :: fmat(:,:)
! ——— Code to allocate and populate imat and fmat here —-—-—
! Now call the C++ function
call adept_routine (imat, fmat)
end program test_interoperability

The routine could be implemented in C++ as follows:

#include <adept_fortran.h>
extern "C" void adept_routine (adept::FortranArrayx int_array,
adept: :FortranArray* flt_array) {
// Declare Adept arrays
adept: :intMatrix int_arr;
adept::floatMatrix flt_arr;
// Associate Adept arrays with Fortran data, or throw a fortran_interoperability_ error
// exception if the rank or type do not match
int_arr >>= int_array;
flt_arr >>= flt_array;
// ——— Operations on int_arr and flt_arr now modify the Fortran arrays ——-—

3.18. Fortran interoperability 42

Since the executable now contains a Fortran source file with a program statement, rather than a C++ source file
defining a main function, the linking step of the compilation must be carried out using the Fortran compiler, but
passing it the C++ standard library, i.e. ~1stdc++.

In the example above, the Adept arrays int_arr and flt_arr behave in the same way as “linked” arrays
described in section 3.2: they know that they do not “own” the original data, so if the user then calls their clear
or resize member functions, they will unlink themselves from the Fortran arrays. The FortranArray class
provides no array features itself, so must be linked to an Array object before any work can be done on it, but it
does provide a handful of member functions for querying its properties:

int rank() Return the number of dimensions of the array.

int dimension(int i) Return the extent of dimension i in memory, counting dimensions from O but using
the Fortran ordering.

int offset (int i) Return the stride in memory of dimension i.

bool is_type<Type>() Return true if the element type of the array is the same as Type (which must be a
known type at compile time).

Type* data<Type> () Return a pointer to the first element of the data, cast to the specified type.

Chapter 4

Using Adept’s optimization functionality

4.1 Background

Since version 2.0.8, Adept provides functionality for solving non-linear optimization problems, specifically finding
the state vector x that minimizes the scalar cost function J(x) (also known as a penalty function or objective
function). A gradient-free minimization algorithm (e.g. Nelder-Mead) requires simply a user-supplied function for
computing J, calling it multiple times for different x to find the minimum J. A first-order minimization algorithm
requires also a user-supplied function returning the gradient of the cost function dJ/0x (a vector). Examples are
the Conjugate Gradient method and the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method.
Knowing the gradient enables such algorithms to find the minimum with far fewer function calls, although a
function call returning dJ/9x is slower than one returning only J. Adept’s optimization interface is in terms of
passive array types, so the user is not obliged to use Adept’s automatic differentiation capability to compute these
gradients, although the examples in this chapter assume that they do. A second-order minimization algorithm
makes use of not only J and 9J/9x, but also a user-supplied function for the Hessian A = 9%J(x)/dx* = V2J (a
symmetric matrix), or an approximation of it. Examples are the Gauss-Newton and Levenberg-Marquardt methods.
Knowing the second derivative means that even fewer iterations should be required to find the minimum of J, but
A is more expensive to compute than d.J /9x.

Adept does not have the ability to automatically compute Hessian matrices for an arbitrary cost function, but
frequently the cost function has a specific form that makes it possible to compute the approximate Hessian from
the Jacobian matrix. Consider the optimization problem of finding the parameters x of non-linear model y(x) that
provides the closest match to a set of “observations” y? in a least-squares sense. For maximum generality we add
constraints that penalize differences between x and a set of a priori values x%, as well as a regularization term. In
this case the cost function could be written as

160 = 36—y TR0 -y) + s k-x B xox] + xTx @D

Here, all vectors are treated as column vectors, R is the error covariance matrix of the observations, B is the error
covariance matrix of the a priori values, and T is a Twomey-Tikhonov matrix that penalizes either spatial gradients
or curvature in x. The approximate Hessian matrix is then given by

A ~ HR'H + B! + T, 4.2)

which can be coded up using Adept to compute the Jacobian matrix H = dy /dx. Each term on the right-hand-side
of (4.2) has its corresponding term in (4.1), so it is easy to work out what the Hessian would look like if only a
subset of the terms in (4.1) were present. The first term of (4.2) is the ‘Gauss-Newton’ approximation of the true
Hessian of the first term of (4.1). It is exact if y(x) is linear, i.e. if each element of y could be represented as a
linear combination of the elements of x. In many cases this is a good enough approximation of the Hessian for fast
convergence to be achieved.

43

4.2. Adept interface 44

4.2 Adept interface

For the purposes of demonstrating how this would be implemented in Adept we simplify (4.1) down to the case of
minimizing a quadratic function, in which case J = y'y/2 and y = x. The former of these two equations means
that the Hessian matrix is simply A = HTH. The latter we implement using active variables:

adept::aVector calc_y (const adept::aVectors x) { return x; }

The test program test/testminimizer.cpp uses a y(x) function for the much more intersting case of the
N-dimensional Rosenbrock function. To set up the problem ready for minimizing, we create a class that derives
from Adept’s Optimizable class and overrides five of its virtual functions:

// Include this header file for the functionality described in this chapter
#include <adept_optimize.h>

class SimpleOptimizable : public adept::Optimizable {
public:
// Return the cost function for a given state vector x
virtual adept::Real calc_cost_function (const adept::Vectors& x) {
adept::Vector y = value(calc_y(x)); // "value" throws away the activeness
return 0.5*sum(y*y) ;

// Calculate the cost function and its gradient from x
virtual adept::Real calc_cost_function_gradient (const adept::Vectors x,
adept: :Vector gradient) {

adept: :aVector xactive = x; // Copy x to an active variable
stack.new_recording () ;

adept::aVector y = calc_y(xactive); // Calculate y from x

adept::aReal cost = 0.5*sum(y*y); // Calculate cost function as an active variable
cost.set_gradient (1.0); // Use reverse-mode differentiation to
stack.reverse () ; // compute the gradient

gradient = xactive.get_gradient ();

return value (cost); // Return cost function as passive variable

// Calculate the cost function, its gradient and the approximate Hessian matrix
virtual adept::Real calc_cost_function_gradient_hessian(const adept::Vectors& x,
adept: :Vector gradient, adept::SymmMatrixs& hessian) {

adept: :aVector xactive = x; // Copy x to an active variable
stack.new_recording () ;

adept::aVector y = calc_y(xactive); // Calculate y from x

adept::aReal cost = 0.5xsum(y~*y); // Calculate cost function as an active variable
stack.independent (xactive); // Define independent variables

stack.dependent (y) ; // Define dependent variables

adept::Matrix jac = stack.jacobian(); // Compute Jacobian matrix dy/dx

hessian = jac.T() #*x jac; // Hessian is a simple matrix product of Jacobian
gradient = jac.T() x* value(y); // Gradient is a matrix-vector product

return value (cost) ; // Return cost function as passive variable

// Every iteration this function is called: here simply report progress to standard output
virtual void report_progress (int niter, const adept::Vectors& x,
adept: :Real cost, adept::Real gnorm) {
std::cout << "Iteration " << niter << ": cost function = " << cost << "\n";

// Minimization algorithm may want to check what derivatives are available: here we
// provide Oth (cost function alone) 1st (gradient) and 2nd (Hessian), sSo return true
// for 0, 1 or 2, false otherwise

virtual bool provides_derivative (int order) { return (order >= 0 && order <= 2); }

// Keep an instance of the Adept stack within the class: avoids the initialization costs
// incurred each iteration if it was inside calc_cost_function_gradient and
// calc_cost_function_gradient_hessian

4.2. Adept interface 45

private:
adept::Stack stack;
}i

Note that if you plan to use a first-order minimization algorithm, you do not need to provide a
calc_cost_function_gradient_hessian function.

Adept’s Minimizer class can minimize the cost function held in an Optimizable object by calling the user-
supplied virtual functions, as follows:

SimpleOptimizable quadratic_function;
adept: :Minimizer minimizer (MINIMIZER ALGORITHM_ LEVENBERG); // Select minimization algorithm

int nx = 10; // Number of state variables
adept: :Vector x(nx); // Declare state vector
x = 3.0; // Initialize state vector to first guess values, all 3.0

// Minimize the cost function:

adept: :MinimizerStatus status = minimizer.minimize (quadratic_function, x);

// Report the convergence status:

std::cout << "Convergence status: " << adept::minimizer_status_string(status) << "\n";

After the minimize member function is called, x contains the state vector that minimizes the cost function.
The available minimization algorithms are:

MINIMIZER ALGORITHM CONJUGATE GRADIENT The first-order Conjugate-Gradient algorithm performs a line
search along the steepest-descent direction, then uses the Polak-Ribiere formula to compute subsequent
search directions that are conjugate to the previous N directions, where N is the number of state variables.
The Conjugate-Gradient method is the most memory efficient, so suitable for problems with large N. The line
search first brackets the minimum then fits a cubic polynomial to the values and gradients at the bounding
points to find the best estimate of the next search point. The Wolfe conditions are applied to determine
whether the cost function along the search direction has been sufficiently minimized.

MINIMIZER ALGORITHM CONJUGATE_GRADIENT FR As above but using the Fletcher-Reeves formula to compute
new search directions.

MINIMIZER ALGORITHM LIMITED MEMORY BFGS The first-order Limited-Memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm uses a limited number of previous search directions (default 6) to build up an
approximation to the inverse of the Hessian matrix, enabling it to make a better estimate of the location of
the minimum of the cost function, but with a slightly higher memory footprint. Note that the full inverse
Hessian is not computed explicitly so this method is still efficient in memory for large N.

MINIMIZER ALGORITHM LEVENBERG The second-order Levenberg algorithm tries to perform a Gauss-Newton
step using the approximate Hessian matrix and assuming that the curvature of J is locally constant. If J at
the new x is not reduced by this step then a damping parameter A is used to scale between Gauss-Newton
and a steepest-descent algorithm.

MINIMIZER ALGORITHM LEVENBERG MARQUARDT The second-order Levenberg-Marquardt algorithm is similar
to the Levenberg algorithm, but scales such that the step sizes are changed in each dimension according to
the curvature of the cost function in that dimension (i.e. the diagonal of the Hessian matrix). This tends to
result in faster convergence than the Levenberg algorithm for problems with very different scaling for each
element of the state vector.

The minimizer can be configured in detail by calling its member functions listed in section 4.3. The possible values
for the return status are given in section 4.4.

The case above is an example of unconstrained minimization: the minimizer is free to try any values of x. This
can lead to it trying unphysical values, such as negative values for a quantity that cannot be negative. To prevent
this, all the minimization algorithms allow the user to specify simple box constraints on the elements of the state
vector. Suppose we wanted to constrain element O to be positive and element 1 to lie in the range 10-20, we would
add these lines:

4.3. Other member functions of the Minimizer class 46

// Declare vectors containing the lower and upper bounds on x

adept: :Vector x_lower, x_upper;

// Set them to the minimum and maximum possible values for their element type (e.g. double)
adept::minimizer_initialize_bounds (nx, x_lower, x_upper);

// Set a lower bound on element 0 and both bounds on element 1

x_lower (0) = 0.0;
x_lower (1) = 10.0;
x_upper (1) = 20.0;

// Call the minimize function with two extra arguments specifying the bounds
status = minimizer.minimize (quadratic_function, x, x_lower, x_upper);

4.3 Other member functions of the minimizer class

In addition to the minimize member function described in section 34.2, the following adept : :Minimizer mem-
ber functions may be called to configure the behaviour of the minimization algorithm:

void set_algorithm(MinimizerAlgorithm algo) Set the algorithm to one of the available minimization
algorithm, e.g. MINIMIZER_ALGORITHM_LEVENBERG. This is an alternative to providing it as an argument
to the Minimizer constructor.

void set_algorithm(const std::string& algo) Set the algorithm using a string, which may
be one of “L-BFGS”, “Conjugate-Gradient”, “Conjugate-Gradient-FR”, “Levenberg” or
“Levenberg-Marquardt”. Note that this function is case-insensitive, and will also accept spaces or un-
derscores in place of hyphens.

void set max_ iterations(int max_it) Setthe maximum number of iterations (default 100).

void set_converged gradient norm(Real cgn) The L2-norm of the dJ/dx vector is computed each itera-
tion, and convergence is deemed to have been achieved when it falls below the value specified here (default
0.1).

void set max step_size (Real mss) Set the maximum step size each iteration (default: no maximum). A
negative or zero value indicates that no maximum step size is to be used.

void ensure updated state(int order = 2) Often the wuser will require the Hessian ma-
trix to compute errors in the solution, and will store the Hessian matrix each time the
calc.cost_function_gradient_hessian function is called. However, by default there is no guar-
antee that when the minimization has completed this function will have been called with the final version
of the state vector. Calling the member function here requests that after minimization is complete, the
derivatives of at least the specified order are consistent with the final state vector (e.g. 2 for both the
Hessian and the gradient vector).

set max_line search_ iterations(int mi) Set the maximum number of iterations to perform in a line
search (default 10). The same value is used by the Conjugate-Gradient and L-BFGS methods.

set_armijo_coeff (Real ac) The first of the Wolfe conditions determines how much of a decrease in the cost
function is satisfactory for a line search to complete, controlled by the Armijo coefficient (default 10~%).
The same value is used by the Conjugate-Gradient and L-BFGS methods.

set_1bfgs curvature coeff (Real lcc) The second Wolfe condition is that the magnitude of the gradient
in the search direction is reduced by a certain amount determined by the curvature coefficient, the optimum
value of which is different for the Conjugate-Gradient and L-BFGS methods. The default for the L-BFGS
method is 0.9.

set_cg_curvature_coeff (Real cgcc) The curvature coefficient to use for the Conjugate-Gradient method
(default 0.1).

4.4. Return status for minimization 47

void set_levenberg damping limits (Real damp min, Real damp.max) Set the minimum and maxi-
mum postive values of the damping parameter A used by both the Levenberg and Levenberg-Marquardt
algorithms (default 1/128 and 10°). Internally the algorithm can still use zero when each iteration is reduc-
ing the cost function.

void set_levenberg damping.start (Real damp.start) Set the initial damping factor for the Levenberg
and Levenberg-Marquardt algorithms (default 0).

void set_levenberg damping restart (Real damp restart) Set the value of the damping factor A in the
Levenberg and Levenberg-Marquardt algorithms that is used when a value of A = 0 does not result in the
cost function being reduced (default 1/4).

void set_levenberg damping multiplier (Real damp multiply, Real damp divide) Set the multi-
plier and divider that will be used to scale the damping factor when an iteration does not and does reduce the
cost function, respectively (default 2.0 and 5.0).

The following member functions return the minimizer algorithm that the Minimizer is currently configured to
use:

MinimizerAlgorithm algorithm() Return the enumeration representing the minimization algorithm.
std: :string algorithm name () Return a string representing the minimization algorithm.
The following member functions extract information about the progress of the minimization after it has completed:

int n_iterations () Return the number of iterations performed. Only iterations that successfully reduced the
cost function are counted.

int n_samples () Return the number of times the cost function was computed, including times when this did
not reduce the cost function.

Real cost_function() Return the final value of the cost function.
Real gradient norm() Return the final value of the norm of the dJ/dx vector.

Real start_cost_function() Return the cost function for the first guess of the state vector provided by the
user.

MinimizerStatus status () Return the convergence status.

4.4 Return status for minimization

The following enumerations may be returned by Minimizer’s minimize member function representing the status
of the minimization. The adept::minimizer_status_string function converts a status to a user-readable
string, as demonstrated in one of the examples in section 4.2.

MINIMIZER_STATUS_SUCCESS Minimization was successful.
MINIMIZER STATUS_EMPTY_STATE The state vector provided is empty.
MINIMIZER_STATUS MAX_ITERATIONS_REACHED The maximum number of iterations was reached.

MINIMIZER STATUS_FAILED TO.CONVERGE Convergence was not achieved, even though some progress may
have been made in minimizing the cost function. This usually occurs when, in the vicinity of the minimum,
the J(x) terrain is quite flat and numerical errors mean that the gradient returned from the user-supplied
function does not point uphill as it should. This means that when the algorithm uses the gradient to try to go
downbhill it finds the cost function increasing.

4.4. Return status for minimization 48

MINIMIZER STATUS_INVALID COST FUNCTION The cost function returned is NaN or infinity. This is usually
solved by using bounded minimization to ensure that the values of x are kept within physically reasonable
bounds.

MINIMIZER STATUS_INVALID GRADIENT The gradient vector returned contains NaN or infinity values. Use
bounded minimization.

MINIMIZER STATUS_INVALID BOUNDS The bounds requested are not valid, for instance a maximum bound was
requested that is less than the minimum bound.

Chapter 5

General considerations

5.1 Setting and checking the global configuration

The following non-member functions are provided in the adept namespace:
std: :string version() Returns a string containing the version number of the Adept library (e.g. “2.0.87).

std::string compiler_version() Returns a string containing the compiler name and version used to com-
pile the Adept library.

std: :string compiler_flags() Returns a string containing the compiler flags used when compiling the
Adept library.

std: :string configuration() Returns a multi-line string listing numerous aspects of the way Adept has
been configured.

bool have matrix multiplication() Returns true if the Adept library has been compiled with BLAS sup-
port, false otherwise.

bool have_linear_algebra() Returns true if the Adept library has been compiled with LAPACK support,
false otherwise.

int set max blas threads(int n) Set the maximum number of threads used for matrix operations by the
BLAS library, or zero to use the upper limit on your system. The number returned is the number actually
used.

int max blas threads () Returnthe maximum number of threads available for matrix operations by the BLAS
library.

The preprocessor can detect the Adept version at run-time via the ADEPT_VERSION preprocessor variable, which
is an integer variable with the digits abbcc corresponding to Adept version a.bb.cc. This could be used to activate
a different compile path dependent on the version, or even to fail to compile if the version is not recent enough:

#if ADEPT_VERSION < 10910

#error "Adept >= 1.9.10 is required by this program"
#endif

5.2 Parallelizing Adept programs

Adept currently has limited built-in support for parallelization. If the algorithms that you wish to differentiate are
individually small enough to be treated by a single processor core, and you wish to differentiate multiple algorithms
independently (or the same algorithm but with multiple sets of inputs) then parallelization is straightforward. This
is because the global variable containing a pointer to the Adept stack uses thread-local storage. This means that if a

49

5.3. The fast exponential function 50

process spawns multiple threads (e.g. using OpenMP or Pthreads) then each thread can declare one adept : : Stack
object and all adouble operations will result in statements being stored on the stack object specific to that thread.
The Adept package contains a test program test_thread_safe that demonstrates this approach in OpenMP.

If your problem is larger and you wish to use parallelism to speed-up the differentiation of a single large algo-
rithm then the build-in support is more limited. Provided your program and the Adept library were compiled with
OpenMP enabled (which is the default for the Adept library if your compiler supports OpenMP), the computation
of Jacobian matrices will be parallelized. By default, the maximum number of concurrent threads will be equal
to the number of available cores, but this can be overridden with the set max_jacobian_threads member func-
tion of the Stack class. Note that the opportunity for speed-up depends on the size of your Jacobian matrix: for
an m X n matrix, the number of independent passes through the stored data is min(m, n) and each thread treats
ADEPT MULTIPASS_SIZE of them (see section 5.6.2), so the maximum number of threads that can be exploited is
min(m, n)/ADEPT MULTIPASS_SIZE. Again, the test_thread_safe program can demonstrate the parallelization
of Jacobian calculations. Note, however, that if the jacobian function is called from within an OpenMP thread
(e.g. if the program already uses OpenMP with each thread containing its own adept : : Stack object), then the
program is likely not to be able to spawn more threads to assist with the Jacobian calculation.

If you need Jacobian matrices then the ability to parallelize the calculation of them is useful since this tends to be
more computationally costly than recording the original algorithm. If you only require the tangent-linear or adjoint
calculations (equivalent to a Jacobian calculation with n = 1 or m = 1, respectively), then unfortunately you are
stuck with single threading. It is intended that a future version of Adept will enable all aspects of differentiating an
algorithm to be parallelized with either or both of OpenMP and MPI.

If your BLAS library has support for parallelization then be aware that the performance may be poor if other parts
of the program are parallelized. This occurs with OpenBLAS, which uses Pthreads, if you also use parallelized Ja-
cobian calculations, which use OpenMP. In this instance you can turn off parallelization of array operations with the
setmax.-blas_threads (1) function in the adept namespace. The number of available threads for array opera-
tions is returned by the max blas_threads () function. Alternatively, you can use the OPENBLAS_NUM_THREADS
environment variable to control the number of threads used by OpenBLAS, and the OMP_NUM_THREADS environ-
ment variable to control the number used in Jacobian calculations.

5.3 The fast exponential function

Adept was originally developed for algorithms that make frequent calls to the exponential function exp, but un-
fortunately most compilers do not vectorize exp. Therefore, Adept provides the function fastexp in the adept
namespace, which can operate on active and passive scalars and array arguments (including the simple f1oat and
double) just like exp. It uses an adapted form of an algorithm from Agner Fog’s Vector Class Library (VCL)
that is around a third faster for scalar arguments, but can be vectorized making it as much as 10 times faster when
applied to Adept arrays depending on the instruction set available. It is accurate but not bit-reproducible with exp
and produces finite results for a slightly smaller range of input values: from —87.3 to +89.0 for £1oat arguments
and from —708.39 to +709.70 for double arguments.

If you have an existing code that calls exp with Adept types as arguments, and wish to use the faster algorithm
for all of them, then simply compile your code with ~-DADEPT_FAST_EXPONENTIAL. This will not change the
behaviour of exp for other types of arguments, which would typically use the version from the C++ standard
library. If you compile your code with -DADEPT FAST_SCALAR EXPONENTIAL then a fast exponential function
adept: :exp will be defined that works on arguments of type float and double. However, this can cause a
namespace clash as some C header files import exp from the standard library outside of any namespace.

5.4 Tips for the best performance

e If you are working with single-threaded code, or in a multi-threaded program but with only one
thread using a Stack object, then you can get slightly faster code by compiling all of your code with
-DADEPT_STACK_THREAD_UNSAFE. This uses a standard (i.e. non-thread-local) global variable to point to
the currently active stack object, which is slightly faster to access.

5.5. Exceptions thrown by the Adept library 51

5.5

Some
derive

If you compile with the —g option to store debugging symbols, your object files and executable will be much
larger because every mathematical statement in the file will have the name of its associated templated type
stored in the file, and these names can be long. Once you have debugged your code, you may wish to omit
debugging symbols from production versions of the executable, or reduce the level of detail with -g1 (on
the GNU C++ compiler). There is typically no performance penalty associated with including debugging
symbols.

A high compiler optimization setting is recommended to inline the function calls associated with mathemat-
ical expressions. On the GNU C++ compiler, the -03 -march=native setting is recommended.

As outlined in the previous section, if you use the exp function then you can replace them with the faster
fastexp function in or compile your code with -DADEPT_FAST_EXPONENTIAL.

On Intel and ARM architectures, Adept will use the SSE2, AVX, AVX512 or NEON instruction sets (de-
pending on availability) to vectorize array expressions that satisfy a number of requirements: (1) they contain
only elementary mathematical operators (including the functions sqrt, max, min and fastexp), (2) the ar-
rays in the expression are either all of type £loat or all of type double, (3) all the arrays in the expression
must have their final dimension increasing in memory with no stride, and (4) none of the arrays are active.
On the GNU compiler the -march=native selects the best available instruction set, but you can select a
specific set with -msse2, -mavx or -mavx512f. With the SSE2 and NEON instruction sets, 2 doubles or
4 floats are operated on at once, for AVX these rise to 4 and 8 respectively, and for AVX512 they rise to 8
and 16 respectively.

By default the Jacobian functions are compiled to process a strip of rows or columns of the Jacobian ma-
trix at once. The optimum width of the strip depends on your platform, and you may wish to change
it. To make the Jacobian functions process n rows or columns at once, recompile the Adept library with
—-DADEPT MULTIPASS_SIZE=n.

If you suspect memory usage is a problem, you may investigate the memory used by Adept by simply sending
your Stack object to a stream, e.g. “std::cout << stack”. You may also use the memory () member
function, which returns the total number of bytes used. Further details of similar functions is given in section
2.8.

Exceptions thrown by the Adept library

functions in the Adept library can throw exceptions, and the exceptions that can be thrown are typically
d from either adept: :autodiff_exception or adept::array_exception. These classes are derived

from adept: :exception, which is itself derived from std: :exception. Most indicate an error in the users
code, usually associated with calling Adept functions in the wrong order.

An

overly comprehensive exception-catching implementation that takes different actions depending on whether

a specific Adept exception, an exception related to automatic differentiation, a general Adept exception, or a non-

Adept

try

exception is thrown, could have the following form:

{

adept::Stack stack;

77 oo

}

Code using the Adept library goes here ...

catch (adept::stack_already_active& e) {

/7

Catch a specific Adept exception

std::cerr << "Error: " << e.what () << std::endl;

7Y oo

}

any further actions go here ...

catch (adept::autodiff_exception& e) {

// Catch any Adept exception related to automatic differentiation not yet caught
std::cerr << "Error: " << e.what () << std::endl;
// ... any further actions go here ...

5.5. Exceptions thrown by the Adept library 52

catch (adept::exception& e) {
// Catch any other Adept exception not yet caught

std::cerr << "Error: " << e.what () << std::endl;
// ... any further actions go here ...

}

catch (...) {

// Catch any exceptions not yet caught
std::cerr << "An error occurred" << std::endl;
// ... any further actions go here ...

}

All exceptions implement the what () member function, which returns a const char« containing an error mes-
sage.

5.5.1 General exceptions

The following exceptions are not specific to arrays or automatic differentiation and inherit directly from

adept: :exception::

feature not_available This exception is thrown by deprecated functions, such as Stack::start (). Itis
also thrown by functions that are not available because a certain library is not being used, such as inv if
Adept was compiled without LAPACK support, or matrix multiplciation via the ‘=’ psudo-operator if Adept
was compiled without BLAS support.

5.5.2 Automatic-differentiation exceptions

The following exceptions relate to automatic differentiation (the functionality described in chapter 2), and all are
in the adept namespace:

gradient _out_of_range This exception can be thrown by the adouble: :get_gradient member function if
the index to its gradient is larger than the number of gradients stored. This can happen if the adouble object
was created after the first adouble: : set_gradient call since the last Stack: :new_recording call. The
first adouble: :set_gradient call signals to the Adept stack that the main algorithm has completed and
so memory can be allocated to store the gradients ready for a forward or reverse pass through the differential
statements. If further adouble objects are created then they may have a gradient index that is out of range
of the memory allocated.

gradients not_initialized This exception can be thrown by functions that require the list of working
gradients to have been initialized (particularly the functions Stack::compute_tangent_linear and
Stack: :compute_adjoint). This initialization occurs when adouble: : set_gradient is called.

stack_already active This exception is thrown when an attempt is made to make a particular Stack object
“active”, but there already is an active stack in this thread. This can be thrown by the stack constructor or
the stack: :activate member function.

dependents_or_independents_ not_identified This exception is thrown when an attempt is made to com-
pute a Jacobian but the independents and/or dependents have not been identified.

wrong.gradient This exception is thrown by the adouble::append.derivative_dependence if
the adouble object that it is called from is not the same as that of the most recent

adouble: :add_-derivative_dependence.

non_finite gradient This exception is thrown if the users code is compiled with the preprocessor variable
ADEPT_TRACK_NON_FINITE_GRADIENTS defined, and a mathematical operation is carried out for which the
derivative is not finite. This is useful to locate the source of non-finite derivatives coming out of an algorithm.

5.6. Configuring the behaviour of Adept 53

5.5.3 Array exceptions

The following exceptions relate to arrays (the functionality described in chapter 3), and all are in the adept
namespace:

sizemismatch A mathematical operation taking two arguments has been applied to array expressions that are
not of the same size. The same exception is thrown if an array expression is applied to an array of a different
size.

inner dimension mismatch Matrix multiplication has been attempted with arrays whose inner dimensions
don’t agree.

empty_array An empty array has been used in an operation when a non-empty array is required; for example, if
an attempt is made to link an array to an empty array (see section 3.2 for more information on linking).

invalid dimension Attempt to create an array with a negative dimension.

index out_of bounds An element or range of elements has been requested from an array but one of the indices
provided is out of range; for a dimension of length n, the index is not in the range 0 to n — 1. Note that
bounds checking is only applied if the preprocessor variable ADEPT_BOUNDS_CHECKING is defined.

invalid operation An invalid operation has been performed that can only be detected at run-time, for example,
calling the diag_submatrix member function of a non-square rank-2 Array.

matrix_ ill_conditioned An attempt has been made to factorize an ill-conditioned matrix (either via solve
or inv).

fortran interoperability error An attempt has been made to associate an Adept Array with a
FortranArray of the wrong rank or type.

5.6 Configuring the behaviour of Adept

The behaviour of the Adept library can be changed by defining one or more of the Adept preprocessor variables.
This can be done either by editing the adept /base . h file and uncommenting the relevant #define lines, or by
compiling your code with -Dxxx compiler options (replacing xxx by the relevant preprocessor variable. There are
two types of preprocessor variable: the first types only apply to the compilation of user code, while the second
types require the Adept library to be recompiled.

5.6.1 Modifications not requiring a library recompile

The preprocessor variables that apply only to user code and do not require the Adept library to be recompiled are
as follows:

ADEPT_STACK_THREAD UNSAFE If this variable is defined, the currently active stack is stored as a global variable
but is not defined to be “thread-local”. This is slightly faster, but means that you cannot use multi-threaded
code with separate threads holding their own active st ack object. Note that although defining this variable
does not require a library recompile, all source files that make up a single executable must be compiled with
this option (or all not be).

ADEPT RECORDING PAUSABLE This option enables an algorithm to be run both with and without automatic
differentiation from within the same program via the functions Stack::pause_recording() and
Stack::continue_recording (). Note that although defining this variable does not require a library
recompile, all source files that make up a single executable must be compiled with this option (or all not be).
Further details on this option are provided in section 2.6.2.

5.6. Configuring the behaviour of Adept 54

ADEPT NO_AUTOMATIC DIFFERENTIATION This option turns off automatic differentiation by treating adouble
objects as double. It is useful if you want to compile one source file twice to produce versions with and
without automatic differentiation. Further details on this option are provided in section 2.6.3.

ADEPT_TRACK.NON_FINITE GRADIENTS Often when an algorithm is first converted to use an operator-
overloading automatic differentiation library, the gradients come out as Not-a-Number or Infinity. The rea-
son is often that the algorithm contains operations for which the derivative is not finite (e.g. v/a for a = 0),
or constructions where a non-finite value is produced but subsequently made finite (e.g. exp(—1.0/a) for
a = 0). Usually the algorithm can be recoded to avoid these problems, if the location of the problematic
operations can be identified. By defining this preprocessor variable, a non_finite_gradient exception
will be thrown if any operation results in a non-finite derivative. Running the program within a debugger
(and ensuring that the exception is not caught within the program) enables the offending line to be identified.

ADEPT_INITIAL STACK LENGTH This preprocessor variable is set to an integer, and is used as the default initial
amount of memory allocated for the recording, in terms of the number of statements and operations.

ADEPT _REMOVE NULL_STATEMENTS If many variables in your code are likely to be zero then redundant operations
will be added to the list of differential statements. For example, the assignment a = b X ¢ with active variables
b and ¢ both being zero results in the differential statement da = 0 x 8b + 0 x dc. This preprocessor variable
checks for zeros and removes terms on the right-hand-side of differential statements if it finds them. In this
case it would put da = 0 on the stack instead. This option slows down the recording stage, but speeds up the
subsequent use of the recorded stack for adjoint and Jacobian calculations. The speed up of the latter is only
likely to exceed the slow down of the former if your code contains many zeros. For most codes, this option
causes a net slow down.

ADEPT_COPY_CONSTRUCTOR_ONLY_ON_RETURN_FROM FUNCTION In Adept 1.1 this enabled a small but unsafe op-
timization. It now has no effect.

ADEPT BOUNDS_CHECKING If this variable is defined, check that all array indices are within the bounds of the
array throwing an index_out_of bounds exception if necessary. If this variable is not defined then these
checks are not performed, which is faster but means that attempts to access arrays out of bounds will result
either of corruption of other memory used by the process, or a segmentation fault.

ADEPT NO_ALIAS_CHECKING This variable turns off alias checking, which results in faster code, but may lead
to unexpected results if the right-hand-side of an array statement shares data with the left-hand-side of the
expression. If this is likely for a particular statement then use the eval function, described in section 3.14.

ADEPT_NO_DIMENSION _CHECKING This variable turns off checking the dimensions match when an array expres-
sion is assigned to another array.

ADEPT_STORAGE THREAD _SAFE This variable ensures that accesses to the reference counter in Storage objects
are atomic, enabling the Array and SpecialMatrix objects that use them to be accessed safely in a multi-
threaded environment. Note that this may incur a performance penalty, and is only available in C++11. See
section 3.16.

ADEPT_INIT_REAL_SNAN To detect errors caused by use of uninitialized data, initialize floating point arrays and
active scalars with signaling NaNs. This is typically accompanied by directing the program to fail with a
floating-point exception if a NaN is used in an expression, achieved by adding the following to one of the
program source files:

finclude <fenv.h>
int _feenableexcept_status = feenableexcept (FE_INVALID|FE_DIVBYZERO |FE_OVERFLOW) ;

It should then be possible to use a debugger to identify the array that was read before being initialized with
real numbers.

5.7. Frequently asked questions 55

5.6.2 Modifications requiring a library recompile

The preprocessor variables that require the Adept library to be recompiled are as follows. Note that if these
variables are used they must be the same when compiling both the library and the user code. This is safest to
implement by editing section 2 of the adept /base . h header file.

ADEPT REAL TYPE SIZE If you want to compile Adept to use a precision other than double for the Real type,
and hence for automatic differentiation, then define this preprocessor variable to be 4 (for f1oat), 8 (for
double) or 16 (for long double). This will also change the default floating-point type for arrays, includ-
ing shortcuts such as vector, Matrix, SymmMatrix. Note that if you specify 16 but your compiler cannot
support it (i.e. sizeof (long double)==8) then Adept would produce sub-optimal code so will fail to
compile.

ADEPT_STACK_STORAGE_STL Use the C++ standard template library vector or valarray classes for storing the
recording and the list of gradients, rather than dynamically allocated arrays. In practice, this tends to slow
down the code.

ADEPT MULTIPASS_SIZE This is set to an integer, invariably a power of two, specifying the number of rows or
columns of a Jacobian that are calculated at once. The optimum value depends on the platform and the
capability of the compiler to optimize loops whose length is known at compile time.

ADEPT MULTIPASS _SIZE ZERO.CHECK This 1is also set to an integer; if it is greater than
ADEPT MULTIPASS_SIZE, then the Stack::jacobian_reverse function checks gradients are non-
zero before using them in a multiplication.

ADEPT_THREAD LOCAL This can be used to specify the way that thread-local storage is declared by your com-
piler. Thread-local storage is used to ensure that the Adept library is thread-safe. By default this variable
is not defined initially, and then later in adept /base.h it is set to an appropriate value on your system:
thread-local if you compile with the C++11 standard, otherwise __declspec (thread) on Microsoft Vi-
sual C++, an empty declaration on Mac (since thread-local storage is not available on many Mac platforms)
and __thread otherwise (appropriate for at least the GNU, Intel, Sun and IBM compilers). To override the
default behaviour, define this variable yourself in adept /base.h.

5.7 Frequently asked questions

Why are all the gradients coming out of the automatic differentiation zero? You have almost certainly omit-
ted or misplaced the call of the adept : : Stack member function “new_recording () ”. It should be placed
after the independent variables in the algorithm have been initialized, but before any subsequent calcula-
tions are performed on these variables. If it is omitted or placed before the point where the independent
variables are initialized, the differential statements corresponding to this initialization (which are all of the
form dx = 0), will be placed in the list of differential statements and will unhelpfully set to zero all your
gradients right at the start of a forward pass (resulting from a call to forward ()) or set them to zero right at
the end of a reverse pass (resulting from a call to reverse ()).

Why are the gradients coming out of the automatic differentiation NaN or Inf (even though the value is correct)?
This can occur if the algorithm contains operations for which the derivative is not finite (e.g. v/a for a = 0),
or constructions where a non-finite value is produced but subsequently made finite (e.g. exp(—1.0/a) for
a = 0). Usually the algorithm can be recoded to avoid these problems, if the location of the problematic
operations can be identified. The simplest way to locate the offending statement is to recompile your
code with the -g option and the ADEPT_TRACK_NON_FINITE_GRADIENTS preprocessor variable set (see
section 5.6.1). Run the program within a debugger and a non_finite_gradient exception will be thrown,
which if not caught within the program will enable you to locate the line in your code where the problem
originated. You may need to turn optimizations off (compile with —00) for the line identification to be
accurate. You can also turn on trapping of floating-point exceptions, as explained in the description of the
ADEPT_INIT_REAL_SNAN option in section 5.6.1.

5.7. Frequently asked questions 56

Why are the gradients coming out of the automatic differentiation wrong? Before suspecting a bug in Adept,
note that round-off error can lead to incorrect gradients even in hand-coded differential code. Consider the
following:

int main() {
Stack stack;
adouble a = 1.0e-26, b;
stack.new_recording () ;
b = sin(a) / a;
b.set_gradient (1.0);
stack.compute_adjoint () ;
std::cout << "a=" << a << ", b=" << b << ", db/da=" << a.get_gradient () << "\n";

We know that near a=0 we should have b=1 and the gradient should be 0. But running the program above
will give a gradient of 1.71799e+10. If you hand-code the gradient, i.e.

double A = 1.0e-26;
double dB_dA = cos(A)/A - sin(A) / (AxA);

you will you will also get the wrong gradient. You can see that the answer is the difference of two very large
numbers and so subject to round-off error. This example is therefore not a bug of Adept, but a limitation
of finite-precision machines. To check this, try compiling your code using either the ADOL-C or CppAD
automatic differentiation tools; I have always found these tools to give exactly the same gradient as Adept.
Unfortunately, round-off error can build up over many operations to give the wrong result, so there may not
be a simple solution in your case.

Can Adept reuse a stored tape for multiple runs of the same algorithm but with different inputs? No. Adept
does not store the full algorithm in its stack (as ADOL-C does in its tapes, for example), only the derivative
information. So from the stack alone you cannot rerun the function with different inputs. However, rerunning
the algorithm including recomputing the derivative information is fast using Adept, and is still faster than
libraries that store enough information in their tapes to enable a tape to be reused with different inputs. It
should be stressed that for any algorithm that includes different paths of execution (“if” statements) based
on the values of the inputs, such a tape would need to be rerecorded anyway. This includes any algorithm
containing a look-up table.

Why does my code crash with a segmentation fault? This means it is trying to access a memory address not
belonging to your program, and the first thing to do is to run your program in a debugger to find out at what
point in your code this occurs. If it is in the adept : :aReal constructor (note that aReal is synonymous
with adouble), then it is very likely that you have tried to initiate an adept::adouble object before
initiating an adept : : Stack object. As described in section 2.3.1, there are good reasons why you need to
initialize the adept : : Stack object first.

How can I interface Adept with a matrix library such as Eigen? Unfortunately the use of expression templates
in Adept means that it does not work optimally (if it works at all) with third-party matrix libraries that
use expression templates. This is the reason why Adept 2.0 combines array functionality with automatic
differentiation in a single expression-template framework.

Do you have plans to enable Adept to produce Hessian matrices? Not in the near future as this is a huge
change. However, if your cost function J(x) (also known as a cost function or penalty function) has a
specific form then the approximate Hessian matrix can be computed from the Jacobian matrix, as described
in chapter 4.

Why doesn’t the ternary operator work? Some compilers will fail to compile the following function:

adept: :adouble piecewise (adept::adouble x) {
return x < 1.0 ? x*x : 2.0xx-1.0;

}

5.8. Copyright and license for Adept software 57

The reason is that these compilers require that the two possible outcomes of the ternary operator have the
same type, but due to the use of expression templates, the types of these mathematical expressions are
actually different. The ternary operator cannot be overloaded to allow such arguments. The solution is to
explicitly convert the outcomes to adouble:

adept: :adouble piecewise (adept::adouble x) {

return x < 1.0 ? adept::adouble (xxx) : adept::adouble(2.0+xx-1.0);
}

Why is my executable so huge? Probably you are including debugging symbols by compiling with the —g option.
Expression templates need long strings to describe them, so this extra content can increase the size of object
files and executables by a factor of ten. This does not slow down execution, but for production code you may
wish to compile without debugging symbols, or if you use the GNU compiler use instead the —g1 option
which stores a reduced amount of debugging information.

Why do I get incorrect behaviour when I use the “auto’ keyword? Since C++11, many programmers make
widespread use of auto as the type of a local object that can be inferred from its initial-
izer. This is problematic for most expression-template libraries, including Adept, because expres-
sions are not evaluated immediately. For example, dividing one aReal object by another returns an
adept::internal::BinaryOperation<Real, aReal,Divide, aReal> object, and the division is only
performed (and differentiated) when this object is assigned to an aReal object. The auto keyword will be
interpreted as the type of the internal object, but this internal object may contain references to temporary
objects that make up the other parts of the expression, and which go out of scope after the semi-colon at the
end of the auto statement. In this example the correct behaviour is obtained by replacing aut o with aReal.
Never to use the aut o keyword when initializing an object from an Adept expression.

5.8 Copyright and license for Adept software

Versions 1.9 of Adept and later are owned and copyrighted jointly by the University of Reading and the European
Centre for Medium Range Weather Forecasts. The copyright to versions 1.1 and earlier is held solely by the
University of Reading.

Since version 1.1, the Adept library is released under the Apache License, Version 2.0, which is available at
http://www.apache.org/licenses/LICENSE-2.0. In short, this free-software license permits you
to use the library for any purpose, and to modify it and combine it with other software to form a larger work.
If you choose, you may release the modified software in either source code or object code form, so may use
Adept in both open-source software and non-free proprietary software. However, distributed versions must retain
copyright notices and also distribute both the information in the NOTICES file and a copy of the Apache License.
Different license terms may be applied to your distributed software, although they must include the conditions on
redistribution provided in the Apache License. This is a just short summary; if in doubt, consult the text of the
license.

In addition to the legally binding terms of the license, it is requested that:

* You cite Hogan (2014) in publications describing algorithms and software that make use of the Adept library.
While not not a condition of the license, this is good honest practice in science and engineering.

* If you make modifications to the Adept library that might be useful to others, you release your modifications
under the terms of the Apache License, Version 2.0, so that they are available to others and could also be
merged into a future official version of Adept. If you do not state the license applied to your modifica-
tions then by default they will be under the terms of the Apache License. You will retain copyright of your
modifications, but if your modifications are written in the course of employment then under almost all cir-
cumstances (including employment by a University) it is your employer who holds the copyright. Therefore
you should obtain permission from them to release your modifications under the Apache License.

http://www.apache.org/licenses/LICENSE-2.0

5.8. Copyright and license for Adept software 58

Note that other source files in the Adept package used for demonstrating and benchmarking Adept are released
under the GNU all-permissive license®, which is specified at the top of all files it applies to.

Adept version 1.0 was released under the terms of the GNU General Public License (GPL) and so could not be
released as part of a larger work unless the entire work was released under the conditions of the GPL. It is hoped
that the switch to the Apache License will facilitate wider use of Adept.

Acknowledgments

Adept 1.0 was developed by Robin Hogan at the University of Reading with funding from European Space
Agency contract 40001041528/11/NL/CT. Some of the modifications to produce version 1.1 were funded by
a National Centre for Earth Observation Mission Support grant (Natural Environment Research Council grant
NE/HO003894/1). Dr Brian Tse is thanked for his work exploring different parallelization strategies during this pe-
riod. Subsequent development has been carried out under employment at the European Centre for Medium Range
Weather Forecasts.

*The GNU all-permissive license reads: Copying and distribution of this file, with or without modification, are permitted in any medium
without royalty provided the copyright notice and this notice are preserved. This file is offered as-is, without any warranty.

Bibliography

Bell, B., 2007: CppAD: A package for C++ algorithmic differentiation. http://www.coin-or.org/CppAD

Liu, D. C., and Nocedal, J., 1989: On the limited memory method for large scale optimization. Math. Programming
B, 45, 503-528.

Gay, D. M., 2005: Semiautomatic differentiation for efficient gradient computations. In Automatic Differentiation:
Applications, Theory, and Implementations, H. M. Biicker, G. F. Corliss, P. Hovland, U. Naumann and B. Norris
(eds.), Springer, 147-158.

Griewank, A., Juedes, D., and Utke, J., 1996: Algorithm 755: ADOL-C: a package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Softw., 22, 131-167.

Hogan, R. J., 2014: Fast reverse-mode automatic differentiation using expression templates in C++. ACM Trans.
Math. Softw., 40, 26:1-26:16.

Veldhuizen, T., 1995: Expression templates. C++ Report, 7, 26-31.

59

http://www.coin-or.org/CppAD

	Introduction
	What is Adept?
	Installing Adept and compiling your code to use it
	Unix-like platforms
	Non-Unix platforms, and compiling Adept applications without linking to an external library

	Using Adept for automatic differentiation
	Introduction
	Code preparation
	Applying reverse-mode differentiation
	Set-up stack to record derivative information
	Initialize independent variables and start recording
	Perform calculations to be differentiated
	Perform reverse-mode differentiation
	Extract the final gradients

	Computing Jacobian matrices
	Real-world usage: interfacing Adept to a third-party minimization library
	Calling an algorithm with and without automatic differentiation from the same program
	Function templates
	Pausable recording
	Multiple object files per source file

	Interfacing with software containing hand-coded Jacobians
	Member functions of the Stack class
	Member functions of the adouble object

	Using Adept's array functionality
	Introduction
	The Array class
	Operators and mathematical functions
	Array slicing
	Passing arrays to and from functions
	Array reduction operations
	Array expansion operations
	Conditional operations
	Fixed-size arrays
	Special square matrices
	Matrix multiplication
	Linear algebra
	Interpolation
	Bounds and alias checking
	Automatic differentiation capabilities specific to arrays
	Array thread safety
	Writing an array to a stream
	Fortran interoperability
	Passing arrays from C++/Adept to Fortran
	Passing arrays from Fortran to C++/Adept

	Using Adept's optimization functionality
	Background
	Adept interface
	Other member functions of the Minimizer class
	Return status for minimization

	General considerations
	Setting and checking the global configuration
	Parallelizing Adept programs
	The fast exponential function
	Tips for the best performance
	Exceptions thrown by the Adept library
	General exceptions
	Automatic-differentiation exceptions
	Array exceptions

	Configuring the behaviour of Adept
	Modifications not requiring a library recompile
	Modifications requiring a library recompile

	Frequently asked questions
	Copyright and license for Adept software

