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Chapter 1

Introduction

1.1 What is Adept?

Adept (Automatic Differentiation using Expression Templates) is a C++ software library that enables algorithms
to be automatically differentiated. Since version 2.0∗ it also provides array classes that can be used in array
expressions. These two capabilities are fully integrated such that array expressions can be differentiated efficiently,
but the array capability may also be used on its own.

The automatic-differentiation capability uses an operator overloading approach, so very little code modifi-
cation is required. Differentiation can be performed in forward mode (the “tangent-linear” computation), reverse
mode (the “adjoint” computation), or the full Jacobian matrix can be computed. This behaviour is common to sev-
eral other libraries, namely ADOL-C (Griewank et al., 1996), CppAD (Bell, 2007) and Sacado (Gay, 2005), but the
use of expression templates, an efficient way to store the differential information and several other optimizations
mean that reverse-mode differentiation tends to be significantly faster and use less memory. In fact, Adept is also
usually only a little slower than an adjoint code you might write by hand, but immeasurably faster in terms of user
time; adjoint coding is very time consuming and error-prone. For technical details of how it works, benchmark
results and further discussion of the factors affecting its speed when applied to a particular code, see Hogan (2014).

Expression templates also underpin a number of libraries that provide the capability to perform mathemat-
ical operations on entire arrays (Veldhuizen, 1995). Unfortunately, if Adept version 1.x and such an array library
are used together, then the speed advantages of expression templates are lost, if indeed the libraries work together
at all. Since version 2.0, Adept provides array classes that overcome this problem: its automatic differentiation
and array capabilities are underpinned by a single unified expression template framework so that array expressions
may be differentiated very efficiently. However, it should be stressed that Adept is useful as a fully functional array
library even if you don’t wish to use its automatic differentiation capability.

This user guide describes how to apply the Adept software library to your code, and many of the examples
map on to those in the test directory of the Adept software package. Section 1.2 outlines how to install Adept
on your system and how to compile your own code to use it. Chapter 2 describes how to use the automatic
differentiation capability of the library, while chapter 3 describes how to use its array capability. Chapter 4 then
describes general aspects such as exception handling, configuration options and license terms.

1.2 Installing Adept and compiling your code to use it

Adept is compatible with any C++98 compliant compiler, although most of the testing has been specifically on
Linux with the GNU C++ compiler. The code is built with the help of a configure shell script generated by
GNU autotools. If you are on a non-Unix system (e.g. Windows) and cannot use shell scripts, see section 1.2.2.
∗Note that the version 1.9.x series serve as beta releases for version 2.0 of Adept.
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1.2.1 Unix-like platforms

On a Unix-like system, do the following:

1. Optionally install packages that Adept can use if available. The main one to consider is OpenBLAS†, which
provides optimized C-BLAS and LAPACKE libraries for matrix operations. If you also install any of the
automatic differentiation tools ADOL-C, CppAD and/or Sacado then the benchmarking test program can
compare them to Adept. One of the test programs uses the minimization algorithm from the GNU Scientific
Library, if available, so you may wish to install that too.

2. Unpack the package (tar xvfz adept-2.x.tar.gz on Linux) and cd to the directory adept-2.x.

3. Configure the build using the configure script (the use of a configure script generated by autoconf

was introduced in Adept version 1.1). The most basic method is to just run

./configure

More likely you will wish to compile with a higher level of optimization than the default (which is -O2),
achieved by setting the environment variable CXXFLAGS. You may also wish to specify the root directory of
the installation, say to /foo. These may be done by running instead

./configure CXXFLAGS="-g -O3" --prefix=/foo

The -g option to CXXFLAGS ensures debugging information is stored. If OpenBLAS is installed in a non-
system directory, say under /foo, then specify the locations as follows:

./configure CPPFLAGS="-I/foo/include" LDFLAGS="-L/foo/lib -Wl,-rpath,/foo/lib"

where the -rpath business is needed in order that the Adept shared library knows where to look for the
OpenBLAS library. If you have them then for the benchmarking program you can also add the non-system
location of ADOL-C, CppAD and Sacado libraries with additional -I and -L arguments, but note that the
-rpath argument is not needed in that case. You can see the more general options available by running
./configure --help; for example, you can turn-off OpenMP parallelization in the computation of Jaco-
bian matrices using --disable-openmp. See also section 4.5 for ways to make more fundamental changes
to the configuration of Adept. The output from the configure script provides information on aspects of
how Adept and the test programs will be built.

4. Build Adept by running

make

This will create the static and shared libraries in adept/.libs.

5. Install the header files and the static and shared libraries by running

make install

If this is to be installed to a system directory, you will need to log in as the super-user first, or run sudo

make install on depending on your system.

6. Build the example and benchmarking programs by running

make check

Note that this may be done without first installing the Adept library to a system directory. This compiles the
following programs in the test directory:

• test misc: the trivial example from Hogan (2014);

• test adept: compares the results of numerical and automatic differentiation;

†OpenBLAS is available from http://www.openblas.net/.

http://www.openblas.net/
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• test with without ad: does the same but compiling the same source code both with and without
automatic differentiation (see test/Makefile for how this is done),

• test radiances: demonstrates the interfacing of Adept with code that provides its own Jacobian;

• test gsl interface: implementation of a simple minimization problem using the L-BFGS mini-
mizer in the GSL library;

• test checkpoint: demonstration of checkpointing, a useful technique for large codes;

• test thread safe: demonstration of the use of multiple OpenMP threads, each with its own instance
of an Adept stack;

• test no lib: demonstrates the use of the adept source.h header file that means there is no need
to link to the Adept library in order to create an executable.

• test arrays: tests many of the array capabilities described in chapter 3.

In the benchmark directory it compiles autodiff benchmark for comparing the speed of the differentia-
tion of two advection algorithms using Adept, ADOL-C, CppAD and Sacado (or whichever subset of these
tools you have on your system). It also compiles animate for visualizing at a terminal what the algorithms
are doing. Further information on running these programs can be found in the README files in the relevant di-
rectories. Note that despite the implication, “make check” does not automatically run any of the programs
it makes to check they function correctly.

To compile source files that use the Adept library, you need to make sure that adept.h and
adept arrays.h are in your include path. If they are located in a directory that is not in the default include path,
add something like -I/home/fred/include to the compiler command line. At the linking stage, add -ladept

to the command line to tell the linker to look for the libadept.a static library, or equivalent shared library. If this
file is in a non-standard location, also add something like -L/home/fred/lib -Wl,-rpath,/home/fred/lib

before the -ladept argument to specify its location. Section 2.6.3 provdes an example Makefile for compiling
code that uses the Adept library. Read on to see how you can compile an Adept application without needing to link
to a library.

1.2.2 Non-Unix platforms, and compiling Adept applications without linking to an exter-
nal library

Most of the difficulty in maintaining software that can compile on multiple platforms arises from the different
ways of compiling software libraries, and the need to test on compilers that may be proprietary. Unfortunately I
don’t have the time to maintain versions of Adept that build specifically on Microsoft Windows or other non-Unix
platforms. However, Adept is not a large library, so I have provided a very simple way to build an Adept application
without the need to link to a pre-compiled Adept library. In one of your source files and one only, add this near the
top:

#include <adept_source.h>

Typically you would include this in the source file containing the main function. This header file is simply a
concatenation of the Adept library source files, so when you compile a file that includes it, you compile in all
the functionally of the Adept library. All other source files in your application should include the adept.h

or adept arrays.h header file as normal. When you link all your object files together to make an exe-
cutable, the Adept functionality will be built in, even though you did not link to an external Adept library. A
demonstration of this is in the test/test no lib.cpp source file, which needs to be compiled together with
test/algorithm.cpp to make an executable. It is hoped that this feature will make it easy to use Adept on
non-Unix platforms, although of course this feature works just as well on Unix-like platforms as well. If you want
to use OpenBLAS on such platforms then you will still need to install that library in the normal way.

A further point to note is that, under the terms of the license, it is permitted to copy all the Adept include
files, including adept source.h, into an include directory in your software package and use it from there in both
binary and source-code releases of your software. This means that users do not need to install Adept separately
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before they use your software. However, if you do this then remember that your use of these files must comply
with the terms of the Apache License, Version 2.0; see section 4.7 for details.



Chapter 2

Using Adept for automatic differentiation

2.1 Introduction

This chapter describes how to use Adept to differentiate your code. For simplicity, none of the examples use array
functionality described in the next chapter. Adept provides the following automatic-differentiation functionality:

Full Jacobian matrix Given the non-linear function y = f (x) relating vector y to vector x coded in C or C++,
after a little code modification Adept can compute the Jacobian matrix H = ∂y/x, where the element at
row i and column j of H is Hi, j = ∂yi/∂x j. This matrix will be computed much more rapidly and accurately
than if you simply recompute the function multiple times, each time perturbing a different element of x by
a small amount. The Jacobian matrix is used in the Gauss-Newton and Levenberg-Marquardt minimization
algorithms.

Reverse-mode differentiation This is a key component in optimization problems where a non-linear function
needs to be minimized but the state vector x is too large for it to make sense to compute the full Jacobian
matrix. Atmospheric data assimilation is the canonical example in the field of meteorology. Given a nonlin-
ear function J(x) relating the scalar to be minimized J to vector x, Adept will compute the vector of adjoints
∂J/∂x. Moreover, for a component of the code that may be expressed as a multi-dimensional non-linear
function y = f (x), Adept can compute ∂J/∂x if it is provided with the vector of input adjoints ∂J/∂y. In
this case, ∂J/∂x is equal to the matrix-vector product HT∂J/∂y, but it is computed here without computing
the full Jacobian matrix H. The vector ∂J/∂x may then be used in a quasi-Newton minimization scheme
(e.g., Liu and Nocedal, 1989).

Forward-mode differentiation Given the non-linear function y = f (x) and a vector of perturbations δx, Adept
will compute the corresponding vector δy arising from a linearization of the function f . Formally, δy is
equal to the matrix-vector product Hδx, but it is computed here without computing the full Jacobian matrix
H. Note that Adept is designed for the reverse case, so might not be as fast or economical in memory in
the forward mode as libraries written especially for that purpose (although Hogan, 2014, showed that it was
competitive).

Adept can automatically differentiate the following operators and functions:

• The standard binary mathematical operators +, -, * and /.

• The assignment versions of these operators: +=, -=, *= and /=.

• The unary mathematical functions sqrt, exp, log, log10, sin, cos, tan, asin, acos, atan, sinh, cosh,
tanh, abs, asinh, acosh, atanh, expm1, log1p, cbrt, erf, erfc, exp2 and log2.

• The binary functions pow, min and max.

Variables to take part in expressions to be differentiated have a special “active” type; such variables can take part in
comparison operations ==, !=, >, <, >= and <=, as well as the diagnostic functions isfinite, isinf and isnan.

6
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Note that at present Adept is missing some functionality that you may require:

• Differentiation is first-order only: it cannot directly compute higher-order derivatives such as the Hessian
matrix (although one of the Frequently Asked Questions in section 4.6 describes how Adept can help com-
pute the Hessian of a certain category of algorithms).

• It has limited support for complex numbers; no support for mathematical functions of complex numbers, and
expressions involving operations (addition, subtraction, multiplication and division) on complex numbers are
not optimized.

• It can be applied to C and C++ only; Adept could not be written in Fortran since the language provides no
template capability.

It is hoped that future versions will remedy these limitations (and maybe even a future version of Fortran will
support templates).

Section 2.2 describes how to prepare your code for automatic differentiation, and section 2.3 describes how
to perform forward- and reverse-mode automatic differentiation on this code. Section 2.4 describes how to compute
Jacobian matrices. Section 2.5 provides a detailed description of how to interface an algorithm implemented
using Adept with a third-party minimization library. Section 2.6 describes how to call a function both with and
without automatic differentiation from within the same program. Section 2.7 describes how to interface to software
modules that compute their own Jacobians. Section 2.8 describes the user-oriented member functions of the Stack
class that contains the differential information and section 2.9 describes the member functions of the “active”
double-precision type adouble.

2.2 Code preparation

If you have used ADOL-C, CppAD or Sacado then you will already be familiar with what is involved in applying
an operator-overloading automatic differentiation package to your code. The user interface to Adept differs from
these only in the detail. It is assumed that you have an algorithm written in C or C++ that you wish to differentiate.
This section deals with the modifications needed to your code, while section 2.3 describes the small additional
amount of code you need to write to differentiate it.

In all source files containing code to be differentiated, you need to include the adept.h header file and
import the adouble type from the adept namespace. Assuming your code uses double precision, you then search
and replace double with the “active” equivalent adouble, but doing this only for those variables whose values
depend on the independent input variables. Under the hood this type is an alias for Active<double>. The single-
precision equivalent is afloat, an alias for Active<float>. Active and passive variables of single and double
precision may be used together in the same expressions, but note that by default all differentiation is done in double
precision.

If you wish to enable your code to be easily recompiled to use different precisions, then you may alter-
natively use the generic Real type from the adept namespace with its active equivalent aReal (an alias for
Active<Real>). Section 4.5 describes how to redefine Real to represent single, double or quadruple preci-
sion. Automatic differentiation will be performed using the same precision as Real, but but be aware that if this
is defined to be the same as a single-precision float, accumulation of round-off error can make the accuracy of
derivatives insufficient for minimization algorithms. The examples in the remainder of this chapter use only double
precision.

Consider the following contrived algorithm from Hogan (2014) that takes two inputs and returns one output:

double algorithm(const double x[2]) {
double y = 4.0;
double s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

The modified code would look like this:
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#include <adept.h>
using adept::adouble;

adouble algorithm(const adouble x[2]) {
adouble y = 4.0;
adouble s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

Changes like this need to be done in all source files that form part of an algorithm to be differentiated.
If you need to access the real number underlying an adouble variable a, for example in order to use it as

an argument to the fprintf function, then use a.value() or adept::value(a). Any mathematical operations
performed on this real number will not be differentiated.

You may use adouble as the template argument of a Standard Template Library (STL) vector type (i.e.
std::vector<adouble>), or indeed any container where you access individual elements one by one. For types
allowing mathematical operations on the whole object, such as the STL complex and valarray types, you will
find that although you can multiply one std::complex<adouble> or std::valarray<adouble> object by
another, mathematical functions (exp, sin etc.) will not work when applied to whole objects, and neither will
some simple operations such as multiplying these types by an ordinary (non-active) double variable. Moreover,
the performance is not great because expressions cannot be fully optimized when in these containers. Therefore
If you need array functionality then you should use the features described in chapter 3. It is hoped that a future
version of Adept will include its own complex type.

2.3 Applying reverse-mode differentiation

Suppose you wanted to create a version of algorithm that returned not only the result but also the gradient of the
result with respect to its inputs, you would do this:

#include <adept.h>
double algorithm_and_gradient(

const double x_val[2], // Input values
double dy_dx[2]) { // Output gradients

adept::Stack stack, // Where the derivative information is stored
using adept::adouble; // Import adouble from adept
adouble x[2] = {x_val[0], x_val[1]}; // Initialize active input variables
stack.new_recording(); // Start recording
adouble y = algorithm(x); // Call version overloaded for adouble args
y.set_gradient(1.0); // Defines y as the objective function
stack.compute_adjoint(); // Run the adjoint algorithm
dy_dx[0] = x[0].get_gradient(); // Store the first gradient
dy_dx[1] = x[1].get_gradient(); // Store the second gradient
return y.value(); // Return the result of the simple computation

}

The component parts of this function are in a specific order, and if this order is violated then the code will not run
correctly. The steps are now described.

2.3.1 Set-up stack to record derivative information

adept::Stack stack;

The Stack object is where the differential version of the algorithm will be stored. When initialized, it makes itself
accessible to subsequent statements via a global variable, but using thread-local storage to ensure thread safety.
It must be initialized before the first adouble object is instantiated and it must not go out of scope until the last
adouble object is destructed. This is because adouble objects register themselves with the currently active stack,
and deregister themselves when they are destroyed; if the same stack is not active throughout the lifetime of such
adouble objects then the code will crash with a segmentation fault.
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In the example here, the Stack object is local to the scope of the function. If another Stack object had
been initialized by the calling function and so was active at the point of entry to the function, then the local Stack
object would throw an adept::stack already active exception (see Test 3 described at test/README in the
Adept package if you want to use multiple Stack objects in the same program). A disadvantage of local Stack
objects is that the memory it uses must be reallocated each time the function is called. This can be overcome in
several ways:
• Declare the Stack object to be static, which means that it will persist between function calls. This has

the disadvantage that you won’t be able to use other Stack objects in the program without deactivating this
one first (see Test 3 in the Adept package, referred to above, for how to do this).

• Initialize Stack at a higher level in the program. If you need access to the stack, you may either
pass a reference to it to functions such as algorithm and gradient, or alternatively you can use the
adept::active stack() function to return a pointer to the currently active stack object.

• Put it in a class so that it is accessible to member functions; this approach is demonstrated in section 2.5.

2.3.2 Initialize independent variables and start recording

adouble x[2] = {x_val[0], x_val[1]};
stack.new_recording();

The first line here simply copies the input values to the algorithm into adouble variables. These are the inde-
pendent variables, but note that there is no obligation for these to be stored as one array (as in CppAD), and for
forward- and reverse-mode automatic differentiation you do not need to tell Adept explicitly via a function call
which variables are the independent ones. The next line clears all differential statements from the stack so that it
is ready for a new recording of differential information. Note that the first line here actually stores two differential
statements, δx[0]=0 and δx[1]=0, which are immediately cleared by the new recording function call. To avoid
the small overhead of storing redundant information on the stack, we could replace the first line with

x[0].set_value(x_val[0]);
x[1].set_value(x_val[1]);

or

adept::set_values(x, 2, x_val);

which have the effect of setting the values of x without storing the equivalent differential statements.
Previous users of Adept version 0.9 should note that since version 1.0, the new recording function re-

places the start function call, which had to be put before the independent variables were initialized. The problem
with this was that the independent variables had to be initialized with the set value or set values functions,
otherwise the gradients coming out of the automatic differentiation would all be zero. Since it was easy to forget
this, new recording was introduced to allow the independent variables to be assigned in the normal way using the
assignment operator (=). But don’t just replace start in your version-0.9-compatible code with new recording;
the latter must appear after the independent variables have been initialized.

2.3.3 Perform calculations to be differentiated

adouble y = algorithm(x);

The algorithm is called, and behind the scenes the equivalent differential statement for every mathematical state-
ment is stored in the stack. The result of the forward calculation is stored in y, known as a dependent variable.
This example has one dependent variable, but any number is allowed, and they could be returned in another way,
e.g. by passing a non-constant array to algorithm that is filled with the final values when the function returns.

2.3.4 Perform reverse-mode differentiation

y.set_gradient(1.0);
stack.compute_adjoint();



2.4. Computing Jacobian matrices 10

The first line sets the initial gradient (or adjoint) of y. In this example, we want the output gradients to be the
derivatives of y with respect to each of the independent variables; to achieve this, the initial gradient of y must be
unity.

More generally, if y was only an intermediate value in the computation of objective function J, then for the
outputs of the function to be the derivatives of J with respect to each of the independent variables, we would need
to set the gradient of y to ∂J/∂y. In the case of multiple intermediate values, a separate call to set gradient is
needed for each intermediate value. If y was an array of length n then the gradient of each element could be set to
the values in a double array y ad using

adept::set_gradients(y, n, y_ad);

The compute adjoint() member function of stack performs the adjoint calculation, sweeping in re-
verse through the differential statements stored on the stack. Note that this must be preceded by at least
one set gradient or set gradients call, since the first such call initializes the list of gradients for
compute adjoint() to act on. Otherwise, compute adjoint() will throw a gradients not initialized

exception.

2.3.5 Extract the final gradients

dy_dx[0] = x[0].get_gradient();
dy_dx[1] = x[1].get_gradient();

These lines simply extract the gradients of the objective function with respect to the two independent variables.
Alternatively we could have extracted them simultaneously using

adept::get_gradients(x, 2, dy_dx);

To do forward-mode differentiation in this example would involve setting the initial gradients of x instead
of y, calling the member function compute tangent linear() instead of compute adjoint(), and extracting
the final gradients from y instead of x.

2.4 Computing Jacobian matrices

Until now we have considered a function with two inputs and one output. Consider the following more general
function whose declaration is

void algorithm2(int n, const adouble* x, int m, adouble* y);

where x points to the n independent (input) variables and y points to the m dependent (output) variables. The
following function would return the full Jacobian matrix:

#include <vector>
#include <adept.h>
void algorithm2_jacobian(

int n, // Number of input values
const double* x_val, // Input values
int m, // Number of output values
double* y_val, // Output values
double* jac) { // Output Jacobian matrix

using adept::adouble; // Import Stack and adouble from adept
adept::Stack stack; // Where the derivative information is stored
std::vector<adouble> x(n); // Vector of active input variables
adept::set_values(&x[0], n, x_val); // Initialize adouble inputs
adept.new_recording(); // Start recording
std::vector<adouble> y(m); // Create vector of active output variables
algorithm2(n, &x[0], m, &y[0]); // Run algorithm
stack.independent(&x[0], n); // Identify independent variables
stack.dependent(&y[0], m); // Identify dependent variables
stack.jacobian(jac); // Compute & store Jacobian in jac

}

Note that:
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• The independent member function of stack is used to identify the independent variables, i.e. the variables
that the derivatives in the Jacobian matrix will be with respect to. In this example there are n independent
variables located together in memory and so can be identified all at once. Multiple calls are possible to
identify further independent variables. To identify a single independent variable, call independent with
just one argument, the independent variable (not as a pointer).

• The dependent member function of stack identifies the dependent variables, and its usage is identical to
independent.

• The memory provided to store the Jacobian matrix (pointed to by jac) must be a one-dimensional array of
size m×n, where m is the number of dependent variables and n is the number of independent variables.

• The resulting matrix is stored in the sense of the index representing the dependent variables varying fastest
(column-major order).

• Internally, the Jacobian calculation is performed by multiple forward or reverse passes, whichever would be
faster (dependent on the numbers of independent and dependent variables).

• The use of std::vector<adouble> rather than new adouble[n] ensures no memory leaks in the case
of an exception being thrown, since the memory associated with x and y will be automatically deallocated
when they go out of scope.

2.5 Real-world usage: interfacing Adept to a minimization library

Suppose we want to find the vector x that minimizes an objective function J(x) that consists of a large algorithm
coded using the Adept library and encapsulated within a C++ class. In this section we illustrate how it may be
interfaced to a third-party minimization algorithm with a C-style interface, specifically the free one in the GNU
Scientific Library. The full working version of this example, using the N-dimensional Rosenbrock banana function
as the function to be minimized, is “Test 4” in the test directory of the Adept software package. The interface to
the algorithm is as follows:

#include <vector>
#include <adept.h>
using adept::adouble;
class State {
public:
// Construct a state with n state variables
State(int n) { active_x_.resize(n); x_.resize(n); }
// Minimize the function, returning true if minimization successful, false otherwise
bool minimize();
// Get copy of state variables after minimization
void x(std::vector<double>& x_out) const;
// For input state variables x, compute the function J(x) and return it
double calc_function_value(const double* x);
// For input state variables x, compute function and put its gradient in dJ_dx
double calc_function_value_and_gradient(const double* x, double* dJ_dx);
// Return the size of the state vector
unsigned int nx() const { return active_x_.size(); }

protected:
// Active version: the algorithm is contained in the definition of this function
adouble calc_function_value(const adouble* x);
// DATA
adept::Stack stack_; // Adept stack object
std::vector<adouble> active_x_; // Active state variables

};

The algorithm itself is contained in the definition of calc function value(const adouble*), which is im-
plemented using adouble variables (following the rules in section 2.2). However, the public interface to the class
uses only standard double types, so the use of Adept is hidden to users of the class. Of course, a complicated
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algorithm may be implemented in terms of multiple classes that do exchange data via adouble objects. We will be
using a quasi-Newton minimization algorithm that calls the algorithm many times with trial vectors x, and for each
call may request not only the value of the function, but also its gradient with respect to x. Thus the public interface
provides calc function value(const double*) and calc function value and gradient, which could
be implemented as follows:

double State::calc_function_value(const double* x) {
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
stack_.new_recording();
return value(calc_function_value(&active_x_[0]));

}

double State::calc_function_value_and_gradient(const double* x, double* dJ_dx) {
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
stack_.new_recording();
adouble J = calc_function_value(&active_x_[0]);
J.set_gradient(1.0);
stack_.compute_adjoint();
adept::get_gradients(&active_x_[0], nx(), dJ_dx);
return value(J);

}

The first function simply copies the double inputs into an adouble vector and runs the version of
calc function value for adouble arguments. Obviously there is an inefficiency here in that gradients are
recorded that are then not used, and this function would be typically 2.5–3 times slower than an implementation of
the algorithm that did not store gradients. Section 2.6 describes three ways to overcome this problem. The second
function above implements reverse-mode automatic differentiation as described in section 2.3.

The minimize member function could be implemented using GSL as follows:

#include <iostream>
#include <gsl/gsl_multimin.h>

bool State::minimize() {
// Minimizer settings
const double initial_step_size = 0.01;
const double line_search_tolerance = 1.0e-4;
const double converged_gradient_norm = 1.0e-3;
// Use the "limited-memory BFGS" quasi-Newton minimizer
const gsl_multimin_fdfminimizer_type* minimizer_type

= gsl_multimin_fdfminimizer_vector_bfgs2;

// Declare and populate structure containing function pointers
gsl_multimin_function_fdf my_function;
my_function.n = nx();
my_function.f = my_function_value;
my_function.df = my_function_gradient;
my_function.fdf = my_function_value_and_gradient;
my_function.params = reinterpret_cast<void*>(this);

// Set initial state variables using GSL’s vector type
gsl_vector *x;
x = gsl_vector_alloc(nx());
for (unsigned int i = 0; i < nx(); ++i) gsl_vector_set(x, i, 1.0);

// Configure the minimizer
gsl_multimin_fdfminimizer* minimizer

= gsl_multimin_fdfminimizer_alloc(minimizer_type, nx());
gsl_multimin_fdfminimizer_set(minimizer, &my_function, x,

initial_step_size, line_search_tolerance);
// Begin loop
size_t iter = 0;
int status;
do {

++iter;
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// Perform one iteration
status = gsl_multimin_fdfminimizer_iterate(minimizer);

// Quit loop if iteration failed
if (status != GSL_SUCCESS) break;

// Test for convergence
status = gsl_multimin_test_gradient(minimizer->gradient, converged_gradient_norm);

}
while (status == GSL_CONTINUE && iter < 100);

// Free memory
gsl_multimin_fdfminimizer_free(minimizer);
gsl_vector_free(x);

// Return true if successfully minimized function, false otherwise
if (status == GSL_SUCCESS) {

std::cout << "Minimum found after " << iter << " iterations\n";
return true;

}
else {

std::cout << "Minimizer failed after " << iter << " iterations: "
<< gsl_strerror(status) << "\n";

return false;
}

}

The GSL interface requires three functions to be defined, each of which takes a vector of state variables x as
input: my function value, which returns the value of the function; my function gradient, which returns the
gradient of the function with respect to x; and my function value and gradient, which returns the value and
the gradient of the function. These functions are provided to GSL as function pointers (see above), but since GSL
is a C library, we need to use the ‘extern "C"’ specifier in their definition. Thus the function definitions would
be:

extern "C"
double my_function_value(const gsl_vector* x, void* params) {

State* state = reinterpret_cast<State*>(params);
return state->calc_function_value(x->data);

}

extern "C"
void my_function_gradient(const gsl_vector* x, void* params, gsl_vector* gradJ) {

State* state = reinterpret_cast<State*>(params);
state->calc_function_value_and_gradient(x->data, gradJ->data);

}

extern "C"
void my_function_value_and_gradient(const gsl_vector* x, void* params,

double* J, gsl_vector* gradJ) {
State* state = reinterpret_cast<State*>(params);

*J = state->calc_function_value_and_gradient(x->data, gradJ->data);
}

When the gsl multimin fdfminimizer iterate function is called, it chooses a search direction and performs
several calls of these functions to approximately minimize the function along this search direction. The this

pointer (i.e. the pointer to the State object), which was provided to the my function structure in the definition
of the minimize function above, is provided as the second argument to each of the three functions above. Unlike
in C, in C++ this pointer needs to be cast back to a pointer to a State type, hence the use of reinterpret cast.

That’s it! A call to minimize should successfully minimize well behaved differentiable multi-dimensional
functions. It should be straightforward to adapt the above to work with other minimization libraries.
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2.6 Calling an algorithm with and without automatic differentiation from
the same program

The calc function value(const double*) member function defined in section 2.5 is sub-optimal in that
it simply calls the calc function value(const adouble*) member function, which not only computes the
value of the function, it also records the derivative information of all the operations involved. This information
is then ignored. This overhead makes the function typically 2.5–3 times slower than it needs to be, although
sometimes (specifically for loops containing no trancendental functions) the difference between an algorithm coded
in terms of doubles and the same algorithm coded in terms of adoubles can exceed a factor of 10 (Hogan, 2014).
The impact on the computational speed of the entire minimization process depends on how many requests are made
for the function value only as opposed to the gradient of the function, and can be significant. We require a way
to avoid the overhead of Adept computing the derivative information for calls to calc function value(const

double*), without having to maintain two versions of the algorithm, one coded in terms of doubles and the other
in terms of adoubles. The three ways to achieve this are now described.

2.6.1 Function templates

The simplest approach is to use a function template for those functions that take active arguments, as demonstrated
in the following example:

#include <adept.h>
class State {
public:
...
template <typename xdouble>
xdouble calc_function_value(const xdouble* x);
...

};

// Example function definition that must be in a header file included
// by any source file that calls calc_function_value
template <typename xdouble>
inline
xdouble State::calc_function_value(const xdouble* x) {

xdouble y = 4.0;
xdouble s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

This takes the example from section 2.2 and replaces adouble by the template type xdouble. Thus,
calc function value can be called with either double or adouble arguments, and the compiler will compile
inline the inactive or active version accordingly. Note that the function template need not be a member function of
a class.

This technique is good if only a small amount of code needs to be differentiated, but for large models the
use of inlining is likely to lead to duplication of compiled code leading to large executables and long compile
times. The following two approaches do not have this drawback and are suitable for large codes.

2.6.2 Pausable recording

The second method involves compiling the entire code with the ADEPT RECORDING PAUSABLE preprocessor vari-
able defined, which can be done by adding an argument -DADEPT RECORDING PAUSABLE to the compler com-
mand line. This modifies the behaviour of mathematical operations performed on adouble variables: instead
of performing the operation and then storing the derivative information, it performs the operation and then only
stores the derivative information if the Adept stack is not in the “paused” state. We then use the following member
function definition instead of the one in section 2.5:

double State::calc_function_value(const double* x) {
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stack_.pause_recording();
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
double J = value(calc_function_value(&active_x_[0]));
stack_.continue_recording();
return J;

}

By pausing the recording for all operations on adouble objects, most of the overhead of storing derivative infor-
mation is removed. The extra run-time check to see whether the stack is in the paused state, which is carried out
by mathematical operations involving adouble objects, generally adds a small overhead. However, in algorithms
where most of the number crunching occurs in loops containing no trancendental functions, even if the stack is in
the paused state, the presence of the check can prevent the compiler from agressively optimizing the loop. In that
instance the third method may be preferable.

2.6.3 Multiple object files per source file

The third method involves compiling each source file containing functions with adouble arguments
twice. The first time, the code is compiled normally to produce an object file containing com-
piled functions including automatic differentiation. The second time, the code is compiled with the
-DADEPT NO AUTOMATIC DIFFERENTIATION flag on the compiler command line. This instructs the adept.h

header file to turn off automatic differentiation by defining the adouble type to be an alias of the double type.
This way, a second set of object files are created containing overloaded versions of the same functions as the first
set but this time without automatic differentiation. These object files can be compiled together to form one exe-
cutable. In the example presented in section 2.5, the calc function value function would be one that would
be compiled twice in this way, once to provide the calc function value(const adouble*) version and the
other to provide the calc function value(const double*) version. Note that any functions that do not in-
clude adouble arguments must be compiled only once, because otherwise the linker will complain about multiple
versions of the same function.

The following shows a Makefile from a hypothetical project that compiles two source files
(algorithm1.cpp and algorithm2.cpp) twice and a third (main.cpp) once:

# Specify compiler and flags
CPP = g++
CPPFLAGS = -Wall -O3 -g
# Normal object files to be created
OBJECTS = algorithm1.o algorithm2.o main.o
# Object files created with no automatic differentiation
NO_AD_OBJECTS = algorithm1_noad.o algorithm2_noad.o
# Program name
PROGRAM = my_program
# Include-file location
INCLUDES = -I/usr/local/include
# Library location and name, plus the math library
LIBS = -L/usr/local/lib -lm -ladept

# Rule to build the program (typing "make" will use this rule)
$(PROGRAM): $(OBJECTS) $(NO_AD_OBJECTS)

$(CPP) $(CPPFLAGS) $(OBJECTS) $(NO_AD_OBJECTS) $(LIBS) -o $(PROGRAM)
# Rule to build a normal object file (used to compile all objects in OBJECTS)
%.o: %.cpp

$(CPP) $(CPPFLAGS) $(INCLUDES) -c $<
# Rule to build a no-automatic-differentiation object (used to compile ones in NO_AD_OBJECTS)
%_noad.o: %.cpp

$(CPP) $(CPPFLAGS) $(INCLUDES) -DADEPT_NO_AUTOMATIC_DIFFERENTIATION -c $< -o $@

There is a further modification required with this approach, which arises because if a header
file declares both the double and adouble versions of a function, then when compiled with
-DADEPT NO AUTOMATIC DIFFERENTIATION it appears to the compiler that the same function is declared twice,
leading to a compile-time error. This can be overcome by using the preprocessor to hide the adouble version if
the code is compiled with this flag, as follows (using the example from section 2.5):
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#include <adept.h>
class State {
public:
...
double calc_function_value(const double* x);

protected:
#ifndef ADEPT_NO_AUTOMATIC_DIFFERENTIATION

adouble calc_function_value(const adouble* x);
#endif

...
};

A final nuance is that if the code contains an adouble object x, then x.value() will work fine in the
compilation when x is indeed of type adouble, but in the compilation when it is set to a simple double variable,
the value() member function will not be found. Hence it is better to use adept::value(x), which returns a
double regardless of the type of x, and works regardless of whether the code was compiled with or without the
-DADEPT NO AUTOMATIC DIFFERENTIATION flag.

2.7 Interfacing with software containing hand-coded Jacobians

Often a complicated algorithm will include multiple components. Components of the code written in C or C++ for
which the source is available are straightforward to convert to using Adept, following the rules in section 2.2. For
components written in Fortran, this is not possible, but if such components have their own hand-coded Jacobian
then it is possible to interface Adept to them. More generally, in certain situations automatic differentiation is much
slower than hand-coding (see the Lax-Wendroff example in Hogan, 2014) and we may wish to hand-code certain
critical parts. In general the Jacobian matrix is quite expensive to compute, so this interfacing strategy makes most
sense if the component of the algorithm has a small number of inputs or a small number of outputs. A full working
version of the following example is given as “Test 3” in the test directory of the Adept package.

Consider the example of a radiative transfer model for simulating satellite microwave radiances at two
wavelengths, I and J, which takes as input the surface temperature Ts and the vertical profile of atmospheric
temperature T from a numerical weather forecast model. Such a model would be used in a data assimilation
system to assimilate the temperature information from the satellite observations into the weather forecast model.
In addition to returning the radiances, the model returns the gradient ∂I/∂Ts and the gradients ∂I/∂Ti for all height
layers i between 1 and n, and likewise for radiance J. The interface to the radiative transfer model is the following:

void simulate_radiances(int n, // Size of temperature array
// Input variables:
double surface_temperature,
const double* temperature,
// Output variables:
double radiance[2],
// Output Jacobians:
double dradiance_dsurface_temperature[2],
double* dradiance_dtemperature);

The calling function needs to allocate 2*n elements for the temperature Jacobian dradiance dtemperature to
be stored, and the stored Jacobian will be oriented such that the radiance index varies fastest.

Adept needs to be told how to relate the radiance perturbations δI and δJ, to perturbations in the input
variables, δTs and δTi (for all layers i). Mathematically, we wish the following relationship to be stored within the
Adept stack:

δI =
∂I
∂Ts

δTs +

n∑
i=1

∂I
∂Ti

δTi. (2.1)

This is achieved with the following wrapper function, which has adouble inputs and outputs and therefore can be
called from within other parts of the algorithm that are coded in terms of adouble objects:

void simulate_radiances_wrapper(int n,
const adouble& surface_temperature,
const adouble* temperature,
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adouble radiance[2]) {
// Create inactive (double) versions of the active (adouble) inputs
double st = value(surface_temperature);
std::vector<double> t(n);
for (int i = 0; i < n; ++i) t[i] = value(temperature[i]);

// Declare variables to hold the inactive outputs and their Jacobians
double r[2];
double dr_dst[2];
std::vector<double> dr_dt(2*n);

// Call the non-Adept function
simulate_radiances(n, st, &t[0], &r[0], dr_dst, &dr_dt[0]);

// Copy the results into the active variables, but use set_value in order
// not to write any equivalent differential statement to the Adept stack
radiance[0].set_value(r[0]);
radiance[1].set_value(r[1]);

// Loop over the two radiances and add the differential statements to the Adept stack
for (int i = 0; i < 2; ++i) {

// Add the first term on the right-hand-side of Equation 1 in the text
radiance[i].add_derivative_dependence(surface_temperature, dr_dst[i]);
// Now append the second term on the right-hand-side of Equation 1. The third argument
// "n" of the following function says that there are n terms to be summed, and the fourth
// argument "2" says to take only every second element of the Jacobian dr_dt, since the
// derivatives with respect to the two radiances have been interlaced. If the fourth
// argument is omitted then relevant Jacobian elements will be assumed to be contiguous
// in memory.
radiance[i].append_derivative_dependence(temperature, &dr_dt[i], n, 2);

}
}

In this example, the form of add derivative dependence for one variable on the right-hand-side of the deriva-
tive expression has been used, and the form of append derivative dependence for an array of variables on
the right-hand-side has been used. As described in section 2.9, both functions have forms that take single variables
and arrays as arguments. Note also that the use of std::vector<double> rather than new double[n] ensures
that if simulate radiances throws an exception, the memory allocated to hold dr dt will be freed correctly.

2.8 Member functions of the Stack class

This section describes the user-oriented member functions of the Stack class. Some functions have arguments
with default values; if these arguments are omitted then the default values will be used. Some of these functions
throw Adept exceptions, defined in section 4.4.2.

Stack(bool activate immediately = true) The constructor for the Stack class. Normally Stack ob-
jects are constructed with no arguments, which means that the object will attempt to make itself the currently
active stack by placing a pointer to itself into a global variable. If another Stack object is currently active,
then the present one will be fully constructed, left in the unactivated state, and an stack already active

exception will be thrown. If a Stack object is constructed with an argument “false”, it will be started in
an unactivated state, and a subsequent call to its member function activate will be needed to use it.

void new recording() Clears all the information on the stack in order that a new recording can be started.
Specifically this function clears all the differential statements, the list of independent and dependent variables
(used in computing Jacobian matrices) and the list of gradients used by the compute tangent linear and
compute adjoint functions. Note that this function leaves the memory allocated to reduce the overhead
of reallocation in the new recordings.

bool pause recording() Stops recording differential information every time an adouble statement is ex-
ecuted. This is useful if within a single program an algorithm needs to be run both with and with-
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out automatic differentiation. This option is only effective within compilation units compiled with
ADEPT RECORDING PAUSABLE defined; if it is, the function returns true, otherwise it returns false. Fur-
ther information on using this and the following function are provided in section 2.6.2.

bool continue recording() Instruct a stack that may have previously been put in a paused state to now
continue recording differential information as normal. This option is only effective within compilation units
compiled with ADEPT RECORDING PAUSABLE defined; if it is, the function returns true, otherwise it returns
false.

bool is recording() Returns false if recording has been paused with pause recording() and the code
has been compiled with ADEPT RECORDING PAUSABLE defined. Otherwise returns true.

void compute tangent linear() Perform a tangent-linear calculation (forward-mode differentiation) using
the stored differential statements. Before calling this function you need call the adouble::set gradient

or set gradients function (see section 2.9) on the independent variables to set the initial gradients, oth-
erwise the function will throw a gradients not initialized exception. This function is synonymous
with forward().

void compute adjoint() Perform an adjoint calculation (reverse-mode differentiation) using the stored
differential statements. Before calling this function you need call the adouble::set gradient or
set gradients function on the dependent variables to set the initial gradients, otherwise the function
will throw a gradients not initialized exception. This function is synonymous with reverse().

void independent(const adouble& x) Before computing Jacobian matrices, you need to identify the in-
dependent and dependent variables, which correspond to the columns and rows of he Jacobian, respectively.
This function adds x to the list of independent variables. If it is the nth variable identified in this way, the
nth column of the Jacobian will correspond to derivatives with respect to x.

void dependent(const adouble& y) Add y to the list of dependent variables. If it is the mth variable iden-
tified in this way, the mth row of the Jacobian will correspond to derivatives of y with respect to each of the
independent variables.

void independent(const adouble* x ptr, size t n) Add n independent variables to the list, which
must be stored consecutively in memory starting at the memory pointed to by x ptr.

void dependent(const adouble* y ptr, size t n) Add n dependent variables to the list, which must
be stored consecutively in memory starting at the memory pointed to by y ptr.

void jacobian(double* jacobian out) Compute the Jacobian matrix, i.e., the gradient of the m dependent
variables (identified with the dependent(...) function) with respect to the n independent variables (iden-
tified with independent(...). The result is returned in the memory pointed to by jacobian out, which
must have been allocated to hold m×n values. The result is stored in column-major order, i.e., the m diemen-
sion of the matrix varies fastest. If no dependents or independents have been identified, then the function
will throw a dependents or independents not identified exception. In practice, this function calls
jacobian forward if n ≤ m and jacobian reverse if n > m.

void jacobian forward(double* jacobian out) Compute the Jacobian matrix by executing n forward
passes through the stored list of differential statements; this is typically faster than jacobian reverse for
n ≤ m.

void jacobian reverse(double* jacobian out) Compute the Jacobian matrix by executing m reverse
passes through the stored list of differential statements; this is typically faster than jacobian forward

for n > m.

void clear gradients() Clear the gradients set with the set gradient member function of the adouble

class. This enables multiple adjoint and/or tangent-linear calculations to be performed with the same record-
ing.
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void clear independents() Clear the list of independent variables, enabling a new Jacobian matrix to be
computed from the same recording but for a different set of independent variables.

void clear dependents() Clear the list of dependent variables, enabling a new Jacobian matrix to be com-
puted from the same recording but for a different set of dependent variables.

size t n independents() Return the number of independent variables that have been identified.

size t n dependents() Return the number of dependent variables that have been identified.

size t n statements() Return the number of differential statements in the recording.

size t n operations() Return the total number of operations in the recording, i.e the total number of terms
on the right-hand-side of all the differential statements.

size t max gradients() Return the number of working gradients that need to be stored in order to perform a
forward or reverse pass.

size t memory() Return the number of bytes currently used to store the differential statements and the working
gradients. Note that this does not include memory allocated but not currently used.

size t n gradients registered() Each time an adouble object is created, it is allocated a unique index
that is used to identify its gradient in the recorded differential statements. When the object is destructed,
its index is freed for reuse. This function returns the number of gradients currently registered, equal to the
number of adouble objects currently created.

void print status(std::ostream& os = std::cout) Print the current status of the Stack object, such
as number of statements and operations stored and allocated, to the stream specified by os, or standard
output if this function is called with no arguments. Sending the Stack object to the stream using the “<<”
operator results in the same behaviour.

void print statements(std::ostream& os = std::cout) Print the list of differential statements to the
specified stream (or standard output if not specified). Each line corresponds to a separate statement, for
example “d[3] = 1.2*d[1] + 3.4*d[2]”.

bool print gradients(std::ostream& os = std::cout) Print the vector of gradients to the specified
stream (or standard output if not specified). This function returns false if no set gradient function
has been called to set the first gradient and initialize the vector, and true otherwise. To diagnose what
compute tangent linear and compute adjoint are doing, it can be useful to call print gradients

immediately before and after.

void activate() Activate the Stack object by copying its this pointer to a global variable that will be
accessed by subsequent operations involving adouble objects. If another Stack is already active, a
stack already active exception will be thrown. To check whether this is the case before calling
activate(), check that the active stack() function (described below) returns 0.

void deactivate() Deactivate the Stack object by checking whether the global variable holding the pointer
to the currently active Stack is equal to this, and if it is, setting it to 0.

bool is active() Returns true if the Stack object is the currently active one, false otherwise.

void start() This function was present in version 0.9 to activate a Stack object, since in that version they
were not constructed in an activated state. This function has now been deprecated and will always throw a
feature not available exception.

int max jacobian threads() Return the maximum number of OpenMP threads available for Jacobian cal-
culations. The number will be 1 if either the library was or the current source code is compiled without
OpenMP support (i.e. without the -fopenmp compiler and linker flag). (Introduced in Adept version 1.1.)
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int set max jacobian threads(int n) Set the maximum number of threads to be used in Jacobian calcu-
lations to n, if possible. A value of 1 indicates that OpenMP will not be used, while a value of 0 indicates
that the maximum available will be used. Returns the maximum that will be used, which may be fewer than
requested, e.g. 1 if the Adept library was compiled without OpenMP support. (Introduced in Adept version
1.1.)

The following non-member functions are provided in the adept namespace:

adept::Stack* active stack() Returns a pointer to the currently active Stack object, or 0 if there is none.

bool is thread unsafe() Returns true if your code has been compiled with
ADEPT STACK THREAD UNSAFE, false otherwise.

2.9 Member functions of the adouble object

This section describes the user-oriented member functions of the adouble class. Some functions have arguments
with default values; if these arguments are omitted then the default values will be used. Some of these functions
throw Adept exceptions, defined in section 4.4.2.

double value() Return the underlying double value.

void set value(double x) Set the value of the adouble object to x, without storing the equivalent differen-
tial statement in the currently active stack.

void set gradient(const double& gradient) Set the gradient corresponding to this adouble variable.
The first call of this function (for any adouble variable) after a new recording is made also initial-
izes the vector of working gradients. This function should be called for one or more adouble ob-
jects after a recording has been made but before a call to Stack::compute tangent linear() or
Stack::compute adjoint().

void get gradient(double& gradient) Set gradient to the value of the gradient correspond-
ing to this adouble object. This function is used to extract the result after a call to
Stack::compute tangent linear() or Stack::compute adjoint(). If the set gradient function
was not called since the last recording was made, this function will throw a gradients not initialized

exception. The function can also throw a gradient out of range exception if new adouble objects were
created since the first set gradient function was called.

void add derivative dependence(const adouble& r, const adouble& g) Add a differential state-
ment to the currently active stack of the form δl = g × δr, where l is the adouble object from which
this function is called. This function is needed to interface to software containing hand-coded Jacobians, as
described in section 2.7; in this case g is the gradient ∂l/∂r obtained from such software.

void append derivative dependence(const adouble& r, const adouble& g) Assuming that the
same adouble object has just had its add derivative dependence member function called, this
function appends + g × δr to the most recent differential statement on the stack. If the calling
adouble object is different, then a wrong gradient exception will be thrown. Note that multiple
append derivative dependence calls can be made in succession.

void add derivative dependence(const adouble* r, const double* g,
size t n = 1, size t m stride = 1)

Add a differential statement to the currently active stack of the form δl =
∑n−1

i=0 m[i] × δr[i], where l

is the adouble object from which this function is called. If the g stride argument is provided, then the
index to the g array will be i × g stride rather than i. This is useful if the Jacobian provided is oriented
such that the relevant gradients for l are not spaced consecutively.
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void append derivative dependence(const adouble* rhs, const double* g,
size t n = 1, size t g stride = 1)

Assuming that the same adouble object has just called the add derivative dependence function, this
function appends +

∑n−1
i=0 m[i]× δr[i] to the most recent differential statement on the stack. If the calling

adouble object is different, then a wrong gradient exception will be thrown. The g stride argument
behaves the same way as in the previous function described.

The following non-member functions are provided in the adept namespace:

double value(const adouble& x) Returns the underlying value of x as a double. This is useful to
enable x to be used in fprintf function calls. It is generally better to use adept::value(x)

rather than x.value(), because the former also works if you compile the code with the
ADEPT NO AUTOMATIC DIFFERENTIATION flag set, as discussed in section 2.6.3.

void set values(adouble* x, size t n, const double* x val) Set the value of the n adouble ob-
jects starting at x to the values in x val, without storing the equivalent differential statement in the currently
active stack.

void set gradients(adouble* x, size t n, const double* gradients) Set the gradients corre-
sponding to the n adouble objects starting at x to the n doubles starting at gradients. This has the
same effect as calling the set gradient member function of each adouble object in turn, but is more
concise.

void get gradients(const adouble* y, size t n, double* gradients) Copy the gradient of the n
adouble objects starting at y into the n doubles starting at gradients. This has the same effect as
calling the get gradient member function of each adouble object in turn, but is more concise. This
function can throw a gradient out of range exception if new adouble objects were created since the
first set gradients function or set gradient member function was called.



Chapter 3

Using Adept’s array functionality

3.1 Introduction

The design of Adept’s array capability and many of the functions is inspired to a significant extent by the built-in
array support in Fortran 90 (and later), and a lesser extent by Matlab, although implemented in the “C++ way”, e.g.
default row-major order with all array indices starting from zero. Future additions to the array capability in Adept
will attempt to reproduce built-in Fortran array functions if available∗. This design makes Adept a good choice if
you have Fortran code that you wish to convert to C++. Adept provides the following array functionality:

Multi-dimensional arrays. Standard arrays can have an arbitrary number of dimensions (although indexing and
slicing is supported only up to 7), and may refer to non-contiguous areas of memory. See section 3.2.

Mathematical operators and functions. Adept supports array expressions containing the standard mathematical
operators +, -, * and /, as well as their assignment versions +=, -=, *= and /=. When applied to arrays, they
work “element-wise”, applying the same operation to every element of the arrays. Adept also supports array
operations on all the mathematical functions listed in section 2.1. The following operators and functions
return boolean array expressions: ==, !=, >, <, >= and <=, isfinite, isinf and isnan. See section 3.3.

Array slicing. There are many ways to produce an array that references a subset of another array, and therefore
can be used as an lvalue in a statement. Arrays can be indexed with scalar integers, a contiguous range
of integers, a strided range of integers or an arbitrary list of integers. This is facilitated with “ ” (a double
underscore) and “end”, such that A( ,end-1) returns a vector pointing to the penultimate column of matrix
A. The member functions diag vector, diag matrix and T produce arrays pointing to the diagonal and
transpose of the original array, respectively. See section 3.4.

Passing arrays to and from functions. Adept uses a reference-counting approach to implement the storage of
array data, enabling multiple array objects to point to the same data, or parts of it in the case of array slices.
This makes it straightforward to pass arrays to and from functions without having to perform a deep copy.
See section 3.5.

Array reduction operations. The functions sum, mean, product, minval, maxval and norm2 perform reduc-
tion operations that return an array of lower rank to the expression they are applied to. The functions all
and any do the same but for boolean expressions. count† returns the number of true elements in a boolean
expression. See section 3.6.

Conditional operations. Two convenient ways are provided to perform an operation on an array depending on
the result of a boolean expression: where and find. The statement A.where(B>0)=C assigns elements of

∗This decision may puzzle some readers, since Fortran is a dirty word to many C++ users due to the limitations of the FORTRAN 77
language. Many of these limitations were overcome in Fortran 90, whose array functionality in particular is rather well designed. All references
to Fortran in this document imply the 1990 (or later) standard.
†Not yet implemented.
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C to elements of A whenever the corresponding element of B is greater than zero. For vectors only, the same
result could be obtained with A(find(B>0))=C(find(B>0)). See section 3.7.

Special square matrices. Adept uses specific classes for symmetric, triangular and band-diagonal matrices, the
latter of which use compressed storage and include diagonal and tridiagonal matrices. Certain operations
such as matrix multiplication and solving linear equations are optimized especially for these objects. See
section 3.8.

Matrix multiplication. Matrix multiplication can be applied to one- and two-dimensional arrays using the
matmul function, of for extra syntactic sugar, the “**” pseudo-operator. Adept uses whatever C-BLAS (C
interface to the Basic Linear Algebra Subroutines) support is available on your system, including optimized
versions for symmetric and band-diagonal matrices. See section 3.9.

Linear algebra. Adept uses the LAPACK library to invert matrices and solve linear systems of equations. See
section 3.10.

Array bounds and alias checking. Adept checks at compile time that terms in an array expression accord in
rank, and at run time that they accord in the size of each dimension. Run-time alias checking is performed
to determine if any objects on the right-hand-side of a statement overlap in memory with the left-hand-side
of the statement, making a temporary copy of the right-hand-side if they do. This can be overridden with the
noalias function. See section 3.11.

3.2 The Array class

The bread and butter of array operations is provided by the Array class template (in the adept namespace along
with all other public types and classes), which has the following declaration:

namespace adept {
template <int Rank, typename Type = Real, bool IsActive = false>
class Array;

}

The first template argument provides the number of dimensions of the array and may be 1 or greater, although
indexing and slicing is only supported up to 7 dimensions. The second argument is the numerical type being stored
and can be any simple integer or real number, including bool. The default type is adept::Real, which is the
default floating-point type the Adept library has been compiled to use for computing derivatives, and is usually
double. The final argument states whether the array is “active”, i.e. whether it participates in the differentiation
of an algorithm.

A number of typedefs are provided for the most common types of array: Vector, Matrix and Array3

provide inactive arrays of type Real and rank 1–3. The corresponding active types are aVector, aMatrix and
aArray3. Vectors of other numeric types are boolVector, intVector, floatVector, afloatVector, and
similarly for matrices and 3D arrays of these types. If you wanted shortcuts for 4-dimensional active and passive
arrays, they could be defined using:

typedef adept::Array<4> Array4;
typedef adept::Array<4,adept::Real,true> aArray4;

An Array can be constructed in numerous ways:

using namespace adept;
Matrix M; // Initialize an empty matrix
Matrix M(3,4); // Initialize a 3-by-4 matrix (up to 7 arguments possible)
Index dim[2]={3,4}; // "Index" is the integer type used for array dimensions

Matrix M(dim); // This works for an array with an arbitrary number of dimensions
Vector v = M(__,0); // Link to a existing array, in this case the first column of M
Vector v(M(__,0)); // Has exactly the same effect as the previous example
Matrix N = log(M); // Initialize with the size and values of a mathematical expression
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Note that in the remaining code examples it will be assumed that using namespace adept has already been
called. When new memory is needed, the Array object creates a Storage object that contains the memory needed,
and stores pointers to both the Storage object and the start of the data. By default the data are accessed in C-
style row-major order (i.e. the final index corresponds to the array dimension that varies most rapidly in memory).
However, this is flexible since in addition to storing the length of each of its n dimensions, a rank-n Array also
stores n “offsets” that define the separation of elements in memory in each dimension. Thus, a 3-by-4 matrix with
row-major storage would store offsets of (4,1). The same size matrix would use column-major storage simply by
storing offsets of (1,3). To make new arrays use column-major storage, call the following function:

set_array_row_major_order(false);

Note that this does not change the storage of any existing objects. Note also that when array expressions are
evaluated, the data are requested in row-major order, so the use of column-major arrays will incur a performance
penalty.

It can be seen from one of the constructors above (the example involving a Vector) that an Array can be
configured to “link” to part of an existing Array, and modifications to the numbers in one will be seen by the other.
This is a very useful feature as it allows slices of an array to be passed to functions and modified; see section 3.4.
Note that the array or sub-array being linked to must be of the same rank, type and activeness as the linking array.
Internally, linking is achieved by both the arrays pointing to the same Storage object, which itself contains a
reference count of the number of arrays pointing to it. When an Array is destructed the reference count is reduced
by one and only if it falls to zero will the data get deallocated.

After it has been constructed, an Array can be resized, relinked or cleared completely as follows:

M.resize(5,2); // Works up to 7 dimensions
Index dim[2]={5,2};

M.resize(dim); // Works for any number of dimensions
v.link(M(end-1,__)); // Size of v set to that of the argument
M.clear(); // Returns array to original empty state

The member functions resize and clear unlink from any existing data, while link can only be used if the array
is already in an empty state. Note that if you assign one array to another (e.g. N=M), then they must be of the same
size; if they are not then you should clear the left-hand-side first.

The Array class implements a number of member functions for inquiring about its properties:

size() Returns the total number of elements, i.e. the product of the lengths of each of the dimensions.

dimension(i) Returns the length of dimension i.

offset(i) Returns the separation in memory of elements along dimension i.

gradient index() For active arrays, returns the gradient index of the first element of the array; for inactive
arrays returns −1.

empty() Returns true if the array is in the empty state, or false otherwise.

An Array may be filled using the << operator for the first element followed by either the << or , operators
for subsequent elements:

Vector v(4);
v << 1 << 2 << 3 << 4; // Fill the four elements of v
v << 1, 2, 3, 4; // Same behaviour but easier on the eye
v << 1, 2, 3, 4, 5; // Error: v has been overfilled
Matrix M(2,4);
M << 1, 2, 3, 4, // Filling of multi-dimensional arrays

5, 6, 7, 8; // automatically moves on to next dimension
M << 1, 2, 3, 4,

v; // v treated as a row vector here

For multidimensional arrays, elements are filled such that the final dimension ticks over fastest (regardless of
whether the array uses row-major storage internally), and new rows are started when a row is complete. Moreover,
other arrays can be part of the list of elements, provided that they fit in. In this context, a rank-1 array is treated
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as a row vector. An index out of bounds exception is thrown if an array is overfilled, while an empty array

exception is thrown if an attempt is made to fill an empty array.

3.3 Operators and mathematical functions

The operators and mathematical functions listed in section 2.1 have been overloaded so that they work exactly as
you would expect. Consider this example:

floatVector a(5); // Inactive single-precision vector
aVector b(5), c(5); // Active vectors
aReal d; // An active scalar
// ... other code manipulating a-d ...
b = 2.0; // Set all elements of b to a scalar value
c += 5.0*a + sin(b)/d; // Add the right-hand-side to c

The penultimate illustrates that all elements of an Array can be set to the same value, although note that this will
only work if the array is not in the empty state. The final line illustrates how terms with different rank, type and
activeness can participate in the same expression. Scalars and arrays can participate in the same expression on the
right-hand-side of a statement provided that the arrays have the same size as the array on the left-hand-side. Objects
of different type (in this case single and double precision) can be combined in a mathematical operation, and the
type of that operation will be the larger (higher precision) of the two types. If active and inactive objects participate
in an expression then the left-hand-side must also be active. Expression templates ensure that no temporary arrays
need to be created to store the output of intermediate parts of the expression. The functions max and min behave
just like binary operators (such as + and *) in this regard, as shown by the following:

c = max(a,b); // Element-wise comparison of a and b
c = min(a,3.0); // Return minimum of each element of a and 3

The examples so far have floating-point results, but some operators (e.g. “==”) and some functions (e.g.
isinf) take floating-point arguments and return a boolean. The Adept versions take floating-point array expres-
sions as arguments and return bool expressions of the same rank and size. Finally, the Adept versions of the
operators !, || and && take a bool expression as arguments and return a bool expression of the same size and
rank.

3.4 Array slicing

This section concerns the many ways that sub-parts of an Array can be extracted to produce an object that can
be used as an lvalue; that is, if the object is modified then it will modify part of the original Array. It should be
stressed that none of these methods results in any rearrangement of data in memory, so they should be efficient.

The first way this can be done is via the function-call and member-access operators (i.e. operator() and
operator[], respectively) of the Array. In the case of the function-call operator, the same number of arguments
as the rank of the array must be provided, where each argument states how its corresponding dimension should be
treated. The nature of the resulting object depends on the type of all of the arguments in a way that is similar to
how Fortran arrays behave, although note that array indices always start at 0. The four different behaviours are as
follows:

Extract single value. If every argument is an integer scalar or scalar expression, then a reference to a single
element of the array will be extracted. If an argument is an integer expression containing end, then end will
be interpretted to be the index to the final element of that dimension (a feature borrowed from Matlab). If
the array is active then the returned object will be of a special “active reference” type that can be used as
an lvalue and ensures that any expressions making use of this element can be differentiated. Now for some
examples:

aMatrix A(4,3);
aReal x = A(1,1); // Copy element at second row and second column into x
A(end-1,1) *= 2.0; // Double the element in the penultimate column and 2nd row of A
A(3) = 4.0; // Error: number of indices does not match number of dimensions
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Extract regular subarray. If every argument is either (i) an integer scalar or scalar expression, or (ii) a regular
range of indices, and there is at least one of (ii), then an Array object will be returned of the same type
and activeness as the original. However, for each argument of type (i), the rank of the returned array will be
one less than that of the original. There are three ways to express a regular range of indices: “ ” represents
all indices of a particular dimension, range(a,b) represents a contiguous range of indices between a and
b (equivalent to a:b in Fortran and Matlab), and stride(a,b,c) represents a regular range of indices
between a and b with spacing c (equivalent to a:b:c in Fortran and a:c:b in Matlab). Note that a, b and
c may be scalar expressions containing end, but c must not be zero although it can be negative to indicate
a reversed ordering. The rank of the returned array is known at compile time; thus if range arguments are
found at run-time to contain only one element (e.g. range(1,1)) then the dimension being referred to will
be not be removed in the returned array but will remain as a singleton dimension. This behaviour is the same
as indexing an array dimension with 1:1 in Fortran. Now for some examples:

v(range(1,end-1)) // Subset of vector v that excludes 1st & last points
A(0,stride(end,0,-1)) // First row of A as a vector treated in reverse order
A(range(0,0),stride(0,0,1)) // A 1-by-1 matrix containing the first element of A

Extract irregular subarray. If an array is indexed as in either of the two methods above, except that one or more
dimensions is instead indexed using a rank-1 Array of integers, then the result is a special “indexed-array”
type that stores how each dimension is indexed. If it then participates either on the left- or right-hand-side of
a mathematical expression then when an element is requested, the indices will be queried to map the request
to obtain the correct element from the original array. This is much less efficient than using regular ranges of
indices as above. It also means that if an indexed array is passed to a function expecting an object of type
Array, then it will first be converted to an Array and any modifications performed within the function will
not be passed back to the original array. For example:

intVector index(3);
index << 2, 3, 5;
Array A(4,4);
A(0,index) = 2.0; // Set irregularly spaced elements of the first row of A

Slice leading dimension. In C, an element is extracted from a two-dimensional array using A[i][j], and A[i]

returns a pointer to a single row of A, where i and j are integers. To enable similar functionality, if A is an
Adept matrix then A[i] indexes the leading dimension by integer i returning an array of rank one less than
the original. This is equivalent to A(i, ). Furthermore, A[i][j] will return an individual element as in C,
but it should be stressed that A(i,j) is more efficient since it does not involve the creation of intermediate
arrays.

There are a few other ways to produce lvalues that consist of a subset or a reordering of an array. They are imple-
mented as member functions of the Array class, in order to distinguish from non-member functions that produce
a copy of the data and therefore cannot be usefully used as lvalues. For example, A.T() and transpose(A) both
return the transpose of matrix A, but the former is faster since it does not make a copy of the original data, while the
latter is more flexible since it can be applied to array expressions (e.g. transpose(A*B)). The member functions
available are:

T() This function returns the transpose of a rank-2 array (a matrix). The returned array points to the same data
but with its dimensions reversed. A compile-time error occurs if this function is used on an array with rank
other than 2. Currently Adept doesn’t allow the transpose of a rank-1 array (a vector), since vectors are not
intended to have an intrinsic orientation. When orientation matters, such as in matrix multiplication, the
intended orientation may be inferred from the context or specified explicitly.

permute(int i0, int i1, ...) This function is the generalization of the transpose for multi-dimensional
arrays: it returns an array of the same rank as the original but with the dimensions rearranged according to
the arguments. There must be the same number of arguments as there are dimensions, and each dimension
(starting at 0) must be provided once only. The returned array is linked to the original; the permutation is
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achieved simply by rearranging the list of dimensions and the list of “offsets” (the separation in memory of
elements along each dimension individually).

diag matrix() When this function is applied to a rank-1 Array of length n, it returns an n-by-n diagonal matrix
(specifically a DiagMatrix; see section 3.8) that points to the data from the rank-1 array along its diagonal.

diag vector() When this function is applied to a rank-2 Array with equally sized dimensions, it returns a rank-
1 array pointing to the data along its diagonals. An invalid operation exception is thrown if applied to
a non-square matrix, and a compile-time error if applied to an array of rank other than 2.

diag vector(i) When applied to a square rank-2 n-by-n Array, this returns a rank-1 array of length n −
abs(i) pointing to the ith superdiagonal of the square matrix, or the −ith subdiagonal if i is negative. An
invalid exception exception occurs if applied to a non-square matrix, and a compile-time error if applied
to an array of rank other than 2.

submatrix on diagonal(ibegin,iend) When applied to a square rank-2 array, this
function returns a square matrix that shares part of the diagonal of the orig-
inal matrix. Thus A.submatrix on diagonal(ibegin,iend) is equivalent to
A(range(ibegin,iend),range(ibegin,iend)). Its purpose is to provide a subsetting facility
for symmetric, triangular and band-diagonal matrices (see section 3.8) for which general array indexing is
not available. If applied to a non-square matrix, an invalid operation exception will be thrown.

3.5 Passing arrays to and from functions

How can large arrays be returned efficiently from a function? If array A is created in a function and then returned
with return A, the receiving function invokes a copy constructor to copy A into an array in that function, followed
by calling the destructor of A. It is unnecessary to perform a deep copy when A is about to be destructed; it is enough
for the receiving array to simply copy the data members of A, i.e. little more than the dimensions of the array and
pointers to the data and the Storage object. This is how copy constructors are implemented in Adept. Consider
the following function to square the elements of a matrix:

Matrix sqr(const Matrix& in) {
Matrix out; // Create an empty matrix but don’t allocate any memory yet
out = in*in; // Allocate memory for "out" and fill with in*in
return out;

}
Matrix A(100,100); // Allocate memory for "A"
Matrix B = sqr(A); // Shallow copy of "out" into "B"

When an empty matrix is constructed using “Matrix out”, it is placed on the stack but no memory is allocated
on the heap for the actual contents of the matrix via a Storage object. This is done on the next line when it is
assigned to in*in. At the return statement, matrix out is received by the copy constructor of matrix B, so a
shallow copy is performed. This means that the description of matrix out is copied to B, including a pointer to the
Storage object. Matrix out is then destructed, with the net result being that B has “stolen” the data in the matrix
from out without it having been copied, thus avoiding unnecessary allocation of memory on the heap, followed
by copying and deallocation.

The fact that Adept copy constructors perform shallow copies leads to two sorts of behaviour that users may
not be expecting. Firstly, if an array is initialized from another array in either of the following two ways:

Matrix M(3,4);
Matrix A(M); // Call copy constructor
Matrix B = M; // Call copy constructor

then the result is that A, B and M share the same data, rather than a copy being made. To make a deep copy, it is
necessary to do the following:

Matrix M(3,4);
Matrix A; // Create empty matrix
A = M; // Call assignment operator for deep copy
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Secondly, arrays passed to functions “by value” behave as if they were passed “by reference”:

void sqr_in_place(Matrix& A) { // Pass A by reference
A *= A;

}
void sqr_in_place2(Matrix A) { // Pass A by value

A *= A;
}
Matrix B(100,100);
sqr_in_place2(B);

These two functions behave the same to the user: the second function creates a shallow copy of B in A, and thus
any modifications to A are also made to B.

The question of how to implement copy constructors is a classical C++ problem, solved in C++11 with
“move semantics”: the compiler can tell when an object is about to be destructed, in which case it performs a
shallow “move” rather than a deep “copy”. The Adept approach is compatible with older C++ compilers that do
not implement move semantics.

3.6 Array reduction operations

A family of functions return a result that is reduced in rank compared to their argument, and operate in the same
way as Fortran functions of the same name. Consider the sum function, which can be used either to sum all the
elements in an array expression and return a scalar, or to sum elements along the dimension specified in the second
argument and return an array whose rank is one less than the first argument:

Array A(3,4);
Real x = sum(A); // Sum all elements of matrix A
Vector v = sum(A,1); // Sum along the row dimension returning a vector of length 3

Functions that are used in the same way are mean, product, minval, maxval and norm2 (the square-root of
the sum of the squares of each element). Note the difference between maxval and max: the behaviour of max is
outlined in section 3.3. Three further functions operate in the same way but on boolean arrays: all returns true
only if all elements are true, any returns true if any element is true (and false otherwise), while count‡

returns the number of true elements. Each of these can work on an individual dimension as with sum and friends.
A further function, dot product(a,b), takes two arguments that must be rank-1 arrays of the same length

and returns the dot product. This is essentially the same as sum(a*b).

3.7 Conditional operations

There are two main ways to perform an operation on an array depending on the result of a boolean expression. The
first is similar to the Fortran where construct:

Array A(3,4);
Array B(3,4);
A.where(B > 0.0) = 2.0 * B; // Only assign to A if B > 0
A.where(!isnan(B)) = either_or(-B, 0.0); // Read from either one expression or the other

In the first example, A is only assigned if a condition is met, and therefore A must be of the same size and rank of
the boolean expression. In the second example A is filled with elements from the first argument of either or if the
boolean expression is true, or from the second argument otherwise; if A is empty then it will be resized to the size
of the boolean expression. In both cases, the expressions on the right-hand-side may be scalars or array expressions
of the same size as the boolean expression. Equivalent expressions are possible replacing the assignment operator
with the +=, -=, *= and /= operators, in which case A must already be the same size as the boolean expression.

An alternative approach that works with only vectors uses the find function. This is similar to the equiva-
lent Matlab function and returns an IntVector containing indices to the true elements of the vector:

‡Not yet implemented.
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Vector v(10), w(10);
v(find(v > 5.0)) = 3.0;
IntVector index = find(v > 5.0);
v(index) = 2.0 * u(index);

This will work if none if no true elements are found: find will return an empty array, and when v is indexed by
an empty vector, no action will be taken. In general, find is less efficient than where.

3.8 Special square matrices

Adept offers several special types of square matrix that can participate in array expressions. They are more efficient
than Arrays in certain operations such as matrix multiplication and assignment, but less efficient in operations such
as accessing individual elements. All use an internal storage scheme compatible with BLAS (Basic Linear Algebra
Subprograms). All are specializations of the SpecialMatrix class template, which has the following declaration:

namespace adept {
template <typename Type, class Engine, bool IsActive = false>
class SpecialMatrix;

}

The first template argument is the numerical type, the second provides the functionality specific to the type of
matrix being simulated, and the third states whether the matrix participates in the differentiation of an algorithm.
The specific types of special matrix are as follows:

Square matrices. SquareMatrix provides a dense square matrix of type Real with aSquareMatrix its active
counterpart. Its functionality is similar to a rank-2 Array, except that its dimensions are always equal and
the data along its fastest varying dimension are always contiguous in memory, which may make it faster than
Array in some instances.

Symmetric matrices. SymmMatrix provides a symmetric matrix of type Real, and aSymmMatrix is its active
equivalent. Internally this type uses row-major unpacked storage with the data held in the lower triangle of
the array and zeros in the upper triangle (equivalent to column-major storage with data in the upper triangle).
If the oposite configuration is required then it is available by specifying different template arguments to the
SpecialMatrix class template. Note that with normal access methods, the storage scheme is opaque to the
user; for example, S(1,2)=2.0 and S(2,1)=2.0 have the same effect.

Triangular matrices. LowerMatrix and UpperMatrix (and their active equivalents prefixed by “a”) provide
triangular matrices of type Real. Internally they use row-major unpacked storage, although column-major
storage is available by specifying different template arguments to the SpecialMatrix class template.

Band diagonal matrices. DiagMatrix, TridiagMatrix and PentadiagMatrix provide diagonal, tridiagonal
and pentadiagonal Real matrices, respectively (with their active equivalents prefixed by “a”). Internally,
row-major BLAS-type band storage is used such that an n-by-n tridiagonal matrix stores 3n rather than n2

elements. Adept supports arbitrary numbers of sub-diagonals and super-diagonals, accessible by specifying
different template arguments to the SpecialMatrix class template.

A SpecialMatrix can be constructed and resized as for Arrays (see section 3.2), with the following additions:

SymmMatrix S(4); // Initialize a 4-by-4 symmetric matrix
S.resize(5); // Resize to a 5-by-5 matrix

These are applicable to all types of SpecialMatrix.
In terms of array indexing and slicing, the member functions T, diag and diag submatrix described in

section 3.4 are all available, but if you index a SpecialMatrix with S(a,b) then a and b must be scalars or
scalar expressions. For triangular or band-diagonal matrices, if the requested element is one of the zero parts of
the matrix then it can only be used as an rvalue in an expression. If you wish to extract arbitrary subarrays from a
SpecialMatrix then it must first be converted to a Matrix:
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SymmMatrix S(6);
intVector index(3);
index << 2, 3, 5;
Matrix M = Matrix(S)(index,stride(0,4,2));

3.9 Matrix multiplication

Matrix multiplication may be invoked in two equivalent ways: using the matmul function or the “**” pseudo-
operator. Following Fortran, the two arguments may be either rank-1 or rank-2, but at least one argument must be
of rank-2. The orientation of any rank-1 argument is inferred from whether it is the first or second argument, as
shown here:

Matrix A(3,5), B(5,3), C;
Vector v(5), w;
C = matmul(A,B); // Matrix-matrix multiplication: return a 3x3 matrix
w = matmul(v,B); // Interpret v as a row vector: return a vector of length 3
w = matmul(A,v); // Interpret v as a column vector: return a vector of length 3

You may find it clearer to use “**” for matrix multiplication as illustrated here§

Matrix A(3,5), B;
SymmMatrix S(5); // 5-by-5 symmetric matrix
Vector c, x(5);
c = A ** log(S) ** x; // Returns a vector of length 3
c = matmul(matmul(A,log(S)),x); // Equivalent to the previous line but using matmul
c = A ** (log(S) ** x); // As the previous example but more efficient
B = 2.0 * S ** A.T(); // Returns a 5-by-3 matrix
B = 2.0 * S ** A; // Run-time error: inner dimensions don’t match

The “**” pseudo-operator has been implemented in Adept by overloading the dereference operator such that “*A”
returns a special type when applied to array expressions, and overloading the multiply operator to perform matrix
multiplication when one of these types is on the right-hand-side. This means that ** has the same precedence
as ordinary multiplication, and both will be applied in order of left to right. Thus, in the first example above,
matrix-matrix multiplication is performed followed by matrix-vector multiplication. The second example shows
how to make this more efficient with parentheses to specify that the rightmost matrix multiplication should be
applied first, leading to two matrix-vector multiplications. The final example shows an expression that would
fail at runtime with an inner dimension mismatch exception due to the matrix multiplication being applied to
matrices whose inner dimensions do not match.

In order to get the best performance, Adept does not use expression templates for matrix multiplication
but rather calls the appropriate level-2 BLAS function for matrix-vector multiplication and level-3 BLAS func-
tion for matrix-matrix multiplication. For matrix multiplication involving active vectors and matrices, Adept first
uses BLAS to perform the matrix multiplication and then stores the equivalent differential statements. There are
therefore a few factors that users should be aware of in order to get the best performance:

• If an array expression rather than an array is provided as an argument to matrix multiplication, it will first
be converted to an Array of the same rank. Therefore, if the same expression is used more than once
in a sequence of matrix multiplications, better performance will be obtained by precomputing the array
expression and storing it in a temporary matrix:

Matrix A(5,5), B(5,5), C(5,5), D(5,5)
// Slow implementation:
C = transpose(2.0*A*B) ** (2.0*A*B);
D = (2.0*A*B) ** C;
// Faster implementation:

§A drawback of the ** interface with the orientation of vector arguments being inferred is that in an expression like A**v**B (where A
and B are matrices and v is a vector), v is interpreted as a column vector in A**v, which returns a column vector result, but this result is then
implicitly transposed when it is used as the left-hand argument of the matrix multiplication with B. Moreover, the order of precedence affects
the result, since this expression will not give the same answer as A**(v**B). It is intended that additional constraints and features will be
added in future versions to require users to more explicitly state what they mean in such situations, to reduce the chance of accidental mistakes.
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{
Matrix tmp(2.0*A*B)
C = tmp.T() ** tmp;
D = tmp ** C;

} // "tmp" goes out of scope here

• If the left-hand argument of a matrix multiplication is a symmetric, triangular or band matrix then a specialist
BLAS function will be used that is faster than the one for general dense matrices. Adept may not be able to
tell if the result of an array expression is symmetric, triangular or has a band structure, and so may not call
the most efficient BLAS function. The user can help as follows:

SymmetricMatrix S(5,5)
Matrix A(5,5), B(5,5)
B = (2.0*exp(S)) ** A; // Slower
B = SymmMatrix(2.0*exp(S)) ** A; // Faster

• BLAS requires that the fastest-varying dimension of input matrices are contiguous and increasing. This is
always the case for the special square matrices described in section 3.8, but not necessarily for a Matrix

or an aMatrix, which are particular cases of the general Array type. If the fastest-varying dimension of
such a matrix is not contiguous and increasing then Adept will copy it to a temporary matrix before invoking
matrix multiplications, as in the following example:

Matrix A(5,5), B, C(5,5);
B.link(A(__, stride(end,1,-1)); // Fastest varying dim is contiguous but decreasing
C = A ** A; // Matrix multiplication applied directly with A
C = B ** B; // Adept will copy B to a temporary matrix before multiplication

3.10 Linear algebra

Adept provides the functions solve and inv to solve systems of linear equations and to invert a matrix, respec-
tively, which themselves call the most appropriate function from LAPACK.¶

Matrix A(5,5), Ainv(5,5), X(5,5), B(5,5);
SymmMatrix S(5), Sinv(5);
Vector x(5), b(5);
Ainv = inv(A); // Invert general square matrices using LU decomposition
Sinv = inv(S); // Invert symmetric matrices using Cholesky decomposition
x = solve(A,b); // Solve general system of linear equations
X = solve(S,B); // Solve symmetric system of linear equations with matrix right-hand-side

3.11 Bounds and alias checking

When encountering an array or active expression, Adept performs several checks to test the validity of the expres-
sion both at compile time and at runtime:

Activeness check. An expression in which an active expression is assigned to an inactive array will fail to compile.

Rank check. An expression will fail to compile if the rank of the array on the left-hand-side of the “=” operator
(or the operators “+=”, “*=”, etc.) does not match the rank of the array expression on the right-hand-side.
However, a scalar (rank-0) expression can be assigned to an array of any rank; its value will be assigned to
all elements of the array. Compile-time rank checks are also performed for each binary operation (binary
operators such as “+” and binary functions such as pow) making up an array expression: compilation will
fail if the two arguments do not have the same rank and neither is of rank 0.

¶Statements involving solve and inv cannot yet be automatically differentiated.
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Dimension check. When a binary operation is applied to two array expressions of rank n then Adept checks at
run-time that each of the n dimensions has the same length. Otherwise, a size mismatch exception is
thrown.

Alias check. Finally, Adept checks to see whether the memory referenced in the array object on the left-hand-side
of a statement overlaps with the memory referenced by any of the objects on the right-hand-side, as in this
example of a shift-right operation:

Vector v(6);
v(range(1,end)) = v(range(0,end-1));

In order to prevent the right-hand-side changing during the operation, Adept copies the expression on the
right-hand-side to a temporary array and then assigns the left-hand-side array to this temporary, which is
equivalent to the following

{
Vector tmp;
tmp = v(range(0,end-1));
v(range(1,end)) = tmp;

} // tmp goes out of scope here

However, for speed Adept does not check to see whether individual memory locations are shared, which
means that for certain strided operations this copying to a temporary array is unnecessary. Nor is it necessary
if elements of an array will be accessed in exactly the same order on the left-hand-side as the right-hand-side.
If the user is sure that alias checking is not necessary then he or she can override alias checking for part or
all of an array expression using the noalias function, as follows:

v(stride(1,end,2)) = noalias(v(stride(0,end-1,2))); // No overlap between RHS and LHS
v = 1.0 + noalias(exp(v)); // LHS & RHS accessed in same order



Chapter 4

General considerations

4.1 Setting and checking the global configuration

The following non-member functions are provided in the adept namespace:

std::string version() Returns a string containing the version number of the Adept library (e.g. “1.9.4”).

std::string compiler version() Returns a string containing the compiler name and version used to com-
pile the Adept library.

std::string compiler flags() Returns a string containing the compiler flags used when compiling the
Adept library.

std::string configuration() Returns a multi-line string listing numerous aspects of the way Adept has
been configured.

int set max blas threads(int n) Set the maximum number of threads used for matrix operations by the
BLAS library, or zero to use the upper limit on your system. The number returned is the number actually
used.

int num blas threads(int n) Return the maximum number of threads available for matrix operations by the
BLAS library.

4.2 Parallelizing Adept programs

Adept currently has limited built-in support for parallelization. If the algorithms that you wish to differentiate are
individually small enough to be treated by a single processor core, and you wish to differentiate multiple algorithms
independently (or the same algorithm but with multiple sets of inputs) then parallelization is straightforward. This
is because the global variable containing a pointer to the Adept stack uses thread-local storage. This means that if a
process spawns multiple threads (e.g. using OpenMP or Pthreads) then each thread can declare one adept::Stack
object and all adouble operations will result in statements being stored on the stack object specific to that thread.
The Adept package contains a test program test thread safe that demonstrates this approach in OpenMP.

If your problem is larger and you wish to use parallelism to speed-up the differentiation of a single large
algorithm then the build-in support is more limited. Provided your program and the Adept library were compiled
with OpenMP enabled (which is the default for the Adept library if your compiler supports OpenMP), the compu-
tation of Jacobian matrices will be parallelized. By default, the maximum number of concurrent threads will be
equal to the number of available cores, but this can be overridden with the set max jacobian threads member
function of the Stack class. Note that the opportunity for speed-up depends on the size of your Jacobian matrix:
for an m× n matrix, the number of independent passes through the stored data is min(m, n) and each thread treats
ADEPT MULTIPASS SIZE of them (see section 4.5.2), so the maximum number of threads that can be exploited is
min(m, n)/ADEPT MULTIPASS SIZE. Again, the test thread safe program can demonstrate the parallelization
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of Jacobian calculations. Note, however, that if the jacobian function is called from within an OpenMP thread
(e.g. if the program already uses OpenMP with each thread containing its own adept::Stack object), then the
program is likely not to be able to spawn more threads to assist with the Jacobian calculation.

If you need Jacobian matrices then the ability to parallelize the calculation of them is useful since this
tends to be more computationally costly than recording the original algorithm. If you only require the tangent-
linear or adjoint calculations (equivalent to a Jacobian calculation with n = 1 or m = 1, respectively), then
unfortunately you are stuck with single threading. It is intended that a future version of Adept will enable all
aspects of differentiating an algorithm to be parallelized with either or both of OpenMP and MPI.

If your BLAS library has support for parallelization then be aware that the performance may be poor if
other parts of the program are parallelized. This occurs with OpenBLAS, which uses Pthreads, if you also use
parallelized Jacobian calculations, which use OpenMP. In this instance you can turn off parallelization of array
operations with the set max blas threads(1) function in the adept namespace. The number of available
threads for array operations is returned by the max blas threads() function. Alternatively, you can use the
OPENBLAS NUM THREADS environment variable to control the number of threads used by OpenBLAS, and the
OMP NUM THREADS environment variable to control the number used in Jacobian calculations.

4.3 Tips for the best performance

• If you are working with single-threaded code, or in a multi-threaded program but with only one
thread using a Stack object, then you can get slightly faster code by compiling all of your code with
-DADEPT STACK THREAD UNSAFE. This uses a standard (i.e. non-thread-local) global variable to point to
the currently active stack object, which is slightly faster to access.

• If you compile with the -g option to store debugging symbols, your object files and executable will be much
larger because every mathematical statement in the file will have the name of its associated templated type
stored in the file, and these names can be long. Once you have debugged your code, you may wish to omit
debugging symbols from production versions of the executable. There appears to be no performance penalty
associated with the debugging symbols, at least with the GNU C++ compiler.

• A high compiler optimization setting is recommended to inline the function calls associated with mathemat-
ical expressions. On the GNU C++ compiler, the -O3 setting is recommended.

• By default the Jacobian functions are compiled to process a strip of rows or columns of the Jacobian ma-
trix at once. The optimum width of the strip depends on your platform, and you may wish to change
it. To make the Jacobian functions process n rows or columns at once, recompile the Adept library with
-DADEPT MULTIPASS SIZE=n.

• If you suspect memory usage is a problem, you may investigate the memory used by Adept by simply sending
your Stack object to a stream, e.g. “std::cout << stack”. You may also use the memory() member
function, which returns the total number of bytes used. Further details of similar functions is given in section
2.8.

4.4 Exceptions thrown by the Adept library

Some functions in the Adept library can throw exceptions, and the exceptions that can be thrown are derived
from either adept::autodiff exception or adept::array exception. These classes are derived from
adept::exception, which is itself derived from std::exception. Most indicate an error in the users code,
usually associated with calling Adept functions in the wrong order.

An overly comprehensive exception-catching implementation that takes different actions depending on
whether a specific Adept exception, an exception related to automatic differentiation, a general Adept exception,
or a non-Adept exception is thrown, could have the following form:
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try {
adept::Stack stack;
// ... Code using the Adept library goes here ...

}
catch (adept::stack_already_active& e) {

// Catch a specific Adept exception
std::cerr << "Error: " << e.what() << std::endl;
// ... any further actions go here ...

}
catch (adept::autodiff_exception& e) {

// Catch any Adept exception related to automatic differentiation not yet caught
std::cerr << "Error: " << e.what() << std::endl;
// ... any further actions go here ...

}
catch (adept::exception& e) {

// Catch any other Adept exception not yet caught
std::cerr << "Error: " << e.what() << std::endl;
// ... any further actions go here ...

}
catch (...) {

// Catch any exceptions not yet caught
std::cerr << "An error occurred" << std::endl;
// ... any further actions go here ...

}

All exceptions implement the what() member function, which returns a const char* containing an error mes-
sage.

4.4.1 Automatic-differentiation exceptions

The following exceptions relate to automatic differentiation (the functionality described in chapter 2), and all are
in the adept namespace:

gradient out of range This exception can be thrown by the adouble::get gradient member function if
the index to its gradient is larger than the number of gradients stored. This can happen if the adouble object
was created after the first adouble::set gradient call since the last Stack::new recording call. The
first adouble::set gradient call signals to the Adept stack that the main algorithm has completed and
so memory can be allocated to store the gradients ready for a forward or reverse pass through the differential
statements. If further adouble objects are created then they may have a gradient index that is out of range
of the memory allocated.

gradients not initialized This exception can be thrown by functions that require the list of working
gradients to have been initialized (particularly the functions Stack::compute tangent linear and
Stack::compute adjoint). This initialization occurs when adouble::set gradient is called.

stack already active This exception is thrown when an attempt is made to make a particular Stack object
“active”, but there already is an active stack in this thread. This can be thrown by the Stack constructor or
the Stack::activate member function.

dependents or independents not identified This exception is thrown when an attempt is made to com-
pute a Jacobian but the independents and/or dependents have not been identified.

wrong gradient This exception is thrown by the adouble::append derivative dependence if
the adouble object that it is called from is not the same as that of the most recent
adouble::add derivative dependence.

non finite gradient This exception is thrown if the users code is compiled with the preprocessor variable
ADEPT TRACK NON FINITE GRADIENTS defined, and a mathematical operation is carried out for which the
derivative is not finite. This is useful to locate the source of non-finite derivatives coming out of an algorithm.

feature not available This exception is thrown by deprecated functions, such as Stack::start().
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4.4.2 Array exceptions

The following exceptions relate to arrays (the functionality described in chapter 3), and all are in the adept

namespace:

size mismatch A mathematical operation taking two arguments has been applied to array expressions that are
not of the same size. The same exception is thrown if an array expression is applied to an array of a different
size.

inner dimension mismatch Matrix multiplication has been attempted with arrays whose inner dimensions
don’t agree.

empty array An empty array has been used in an operation when a non-empty array is required; for example, if
an attempt is made to link an array to an empty array (see section 3.2 for more information on linking).

invalid dimension Attempt to create an array with a negative dimension.

index out of bounds An element or range of elements has been requested from an array but one of the indices
provided is out of range; for a dimension of length n, the index is not in the range 0 to n − 1. Note that
bounds checking is only applied if the preprocessor variable ADEPT BOUNDS CHECKING is defined.

invalid operation An invalid operation has been performed that can only be detected at run-time, for example,
calling the diag submatrix member function of a non-square rank-2 Array.

matrix ill conditioned An attempt has been made to factorize an ill-conditioned matrix (either via solve

or inv).

4.5 Configuring the behaviour of Adept

The behaviour of the Adept library can be changed by defining one or more of the Adept preprocessor variables.
This can be done either by editing the adept/base.h file and uncommenting the relevant #define lines, or by
compiling your code with -Dxxx compiler options (replacing xxx by the relevant preprocessor variable. There are
two types of preprocessor variable: the first types only apply to the compilation of user code, while the second
types require the Adept library to be recompiled.

4.5.1 Modifications not requiring a library recompile

The preprocessor variables that apply only to user code and do not require the Adept library to be recompiled are
as follows:

ADEPT STACK THREAD UNSAFE If this variable is defined, the currently active stack is stored as a global variable
but is not defined to be “thread-local”. This is slightly faster, but means that you cannot use multi-threaded
code with separate threads holding their own active Stack object. Note that although defining this variable
does not require a library recompile, all source files that make up a single executable must be compiled with
this option (or all not be).

ADEPT RECORDING PAUSABLE This option enables an algorithm to be run both with and without automatic
differentiation from within the same program via the functions Stack::pause recording() and
Stack::continue recording(). Note that although defining this variable does not require a library
recompile, all source files that make up a single executable must be compiled with this option (or all not be).
Further details on this option are provided in section 2.6.2.

ADEPT NO AUTOMATIC DIFFERENTIATION This option turns off automatic differentiation by treating adouble

objects as double. It is useful if you want to compile one source file twice to produce versions with and
without automatic differentiation. Further details on this option are provided in section 2.6.3.
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ADEPT TRACK NON FINITE GRADIENTS Often when an algorithm is first converted to use an operator-
overloading automatic differentiation library, the gradients come out as Not-a-Number or Infinity. The rea-
son is often that the algorithm contains operations for which the derivative is not finite (e.g.

√
a for a = 0),

or constructions where a non-finite value is produced but subsequently made finite (e.g. exp(−1.0/a) for
a = 0). Usually the algorithm can be recoded to avoid these problems, if the location of the problematic
operations can be identified. By defining this preprocessor variable, a non finite gradient exception
will be thrown if any operation results in a non-finite derivative. Running the program within a debugger
(and ensuring that the exception is not caught within the program) enables the offending line to be identified.

ADEPT INITIAL STACK LENGTH This preprocessor variable is set to an integer, and is used as the default initial
amount of memory allocated for the recording, in terms of the number of statements and operations.

ADEPT REMOVE NULL STATEMENTS If many variables in your code are likely to be zero then redundant operations
will be added to the list of differential statements. For example, the assignment a = b×c with active variables
b and c both being zero results in the differential statement δa = 0×δb+0×δc. This preprocessor variable
checks for zeros and removes terms on the right-hand-side of differential statements if it finds them. In this
case it would put δa = 0 on the stack instead. This option slows down the recording stage, but speeds up the
subsequent use of the recorded stack for adjoint and Jacobian calculations. The speed up of the latter is only
likely to exceed the slow down of the former if your code contains many zeros. For most codes, this option
causes a net slow down.

ADEPT COPY CONSTRUCTOR ONLY ON RETURN FROM FUNCTION (not recommended!) If copy constructors for
adouble objects are only used in the return values for functions, then defining this preprocessor variable
will lead to slightly faster code, because it will be assumed that when a copy constructor is called, the index
to its gradient can simply be copied because the object being copied will shortly be destructed (otherwise
communication with the Stack object is required to unregister one and immediately register the other). You
need to be sure that the code being compiled with this option does not invoke the copy constructor in any
other circumstances. Specifically, it must not include either of these constructions: “adouble x = y;” or
“adouble x(y);”, where y is an adouble object. If it does, then strange errors will occur.

ADEPT BOUNDS CHECKING If this variable is defined, check that all array indices are within the bounds of the
array throwing an index out of bounds exception if necessary. If this variable is not defined then these
checks are not performed, which is faster but means that attempts to access arrays out of bounds will result
either of corruption of other memory used by the process, or a segmentation fault.

4.5.2 Modifications requiring a library recompile

The preprocessor variables that require the Adept library to be recompiled are as follows. Note that if these
variables are used they must be the same when compiling both the library and the user code. This is safest to
implement by editing section 2 of the adept/base.h header file.

ADEPT FLOATING POINT TYPE If you want to compile Adept to use a precision other than double for the Real

type, and hence for automatic differentiation, then define this preprocessor variable to be the floating-point
type required, e.g. float or long double. To use from the compiler command-line, use the argument
-DADEPT FLOATING POINT TYPE=float or -DADEPT FLOATING POINT TYPE="long double".

ADEPT STACK STORAGE STL Use the C++ standard template library vector or valarray classes for storing the
recording and the list of gradients, rather than dynamically allocated arrays. In practice, this tends to slow
down the code.

ADEPT MULTIPASS SIZE This is set to an integer, invariably a power of two, specifying the number of rows or
columns of a Jacobian that are calculated at once. The optimum value depends on the platform and the
capability of the compiler to optimize loops whose length is known at compile time.
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ADEPT MULTIPASS SIZE ZERO CHECK This is also set to an integer; if it is greater than
ADEPT MULTIPASS SIZE, then the Stack::jacobian reverse function checks gradients are non-
zero before using them in a multiplication.

ADEPT THREAD LOCAL This can be used to specify the way that thread-local storage is declared by your compiler.
Thread-local storage is used to ensure that the Adept library is thread-safe. By default this variable is not
defined initially, and then later in adept/base.h it is set to declspec(thread) on Microsoft Visual
C++, an empty declaration on Mac (since thread-local storage is not available on many Mac platforms) and
thread otherwise (appropriate for at least the GCC, Intel, Sun and IBM compilers). To override the default

behaviour, define this variable yourself in adept/base.h.

4.6 Frequently asked questions

Why are all the gradients coming out of the automatic differentiation zero? You have almost certainly omit-
ted or misplaced the call of the adept::Stack member function “new recording()”. It should be placed
after the independent variables in the algorithm have been initialized, but before any subsequent calcula-
tions are performed on these variables. If it is omitted or placed before the point where the independent
variables are initialized, the differential statements corresponding to this initialization (which are all of the
form δx = 0), will be placed in the list of differential statements and will unhelpfully set to zero all your
gradients right at the start of a forward pass (resulting from a call to forward()) or set them to zero right at
the end of a reverse pass (resulting from a call to reverse()).

Why are the gradients coming out of the automatic differentiation NaN or Inf (even though the value is correct)?
This can occur if the algorithm contains operations for which the derivative is not finite (e.g.

√
a for a = 0),

or constructions where a non-finite value is produced but subsequently made finite (e.g. exp(−1.0/a) for
a = 0). Usually the algorithm can be recoded to avoid these problems, if the location of the problematic
operations can be identified. The simplest way to locate the offending statement is to recompile your
code with the -g option and the ADEPT TRACK NON FINITE GRADIENTS preprocessor variable set (see
section 4.5.1). Run the program within a debugger and a non finite gradient exception will be thrown,
which if not caught within the program will enable you to locate the line in your code where the problem
originated. You may need to turn optimizations off (compile with -O0) for the line identification to be
accurate. Another approach is to add the following in a C++ source file:

#include <fenv.h>
int _feenableexcept_status = feenableexcept(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW);

This will cause a floating point exception to be thrown when a NaN or Inf is generated, which can again be
located in a debugger.

Why are the gradients coming out of the automatic differentiation wrong? Before suspecting a bug in Adept,
note that round-off error can lead to incorrect gradients even in hand-coded differential code. Consider the
following:

int main() {
Stack stack;
adouble a = 1.0e-26, b;
stack.new_recording();
b = sin(a) / a;
b.set_gradient(1.0);
stack.compute_adjoint();
std::cout << "a=" << a << ", b=" << b << ", db/da=" << a.get_gradient() << "\n";

}

We know that near a=0 we should have b=1 and the gradient should be 0. But running the program above
will give a gradient of 1.71799e+10. If you hand-code the gradient, i.e.

double A = 1.0e-26;
double dB_dA = cos(A)/A - sin(A) / (A*A);
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you will you will also get the wrong gradient. You can see that the answer is the difference of two very large
numbers and so subject to round-off error. This example is therefore not a bug of Adept, but a limitation
of finite-precision machines. To check this, try compiling your code using either the ADOL-C or CppAD
automatic differentiation tools; I have always found these tools to give exactly the same gradient as Adept.
Unfortunately, round-off error can build up over many operations to give the wrong result, so there may not
be a simple solution in your case.

Can Adept reuse a stored tape for multiple runs of the same algorithm but with different inputs? No. Adept
does not store the full algorithm in its stack (as ADOL-C does in its tapes, for example), only the derivative
information. So from the stack alone you cannot rerun the function with different inputs. However, rerunning
the algorithm including recomputing the derivative information is fast using Adept, and is still faster than
libraries that store enough information in their tapes to enable a tape to be reused with different inputs. It
should be stressed that for any algorithm that includes different paths of execution (“if” statements) based
on the values of the inputs, such a tape would need to be rerecorded anyway. This includes any algorithm
containing a look-up table.

Why does my code crash with a segmentation fault? This means it is trying to access a memory address not
belonging to your program, and the first thing to do is to run your program in a debugger to find out at what
point in your code this occurs. If it is in the adept::aReal constructor (note that aReal is synonymous
with adouble), then it is very likely that you have tried to initiate an adept::adouble object before
initiating an adept::Stack object. As described in section 2.3.1, there are good reasons why you need to
initialize the adept::Stack object first.

How can I interface Adept with a matrix library such as Eigen? Unfortunately the use of expression templates
in Adept means that it does not work optimally (if it works at all) with third-party matrix libraries that
use expression templates. This is the reason why Adept 2.0 combines array functionality with automatic
differentiation in a single expression-template framework.

Do you have plans to enable Adept to produce Hessian matrices? Not in the near future; refining the array
functionality is a higher priority at the moment. However, if your objective function J(x) (also known
as a cost function or penalty function) has a quadratic dependence on each of the elements of y(x), where
y is a nonlinear function of the independent variables x, then the Hessian matrix ∇2

xJ can be computed
from the Jacobian matrix H = ∂y/∂x. This is the essence of the Gauss-Newton and Levenberg-Marquardt
algorithms. Consider the optimization problem of finding the parameters x of nonlinear model y(x) that pro-
vides the closest match to a set of “observations” yo in a least-squares sense. For maximum generality we
add constraints that penalize differences between x and a set of a priori values xa, as well as a regularization
term. In this case the objective function could be written as

J(x) = [y(x)− yo]
T
R−1 [y(x)− yo] + [x− xa]

T
B−1 [x− xa] + xTTx. (4.1)

Here, all vectors are treated as column vectors, R is the error covariance matrix of the observations, B is
the error covariance matrix of the a priori values, and T is a Twomey-Tikhonov matrix that penalizes either
spatial gradients or curvature in x. The Hessian matrix is then given by

∇2
xJ = HTR−1H + B−1 + T, (4.2)

which can be coded up using Adept to compute H. Each term on the right-hand-side of (4.2) has its cor-
responding term in (4.1), so it is easy to work out what the Hessian would look like if only a subset of the
terms in (4.1) were present.

4.7 License for Adept software

Since version 1.1, the Adept library is released under the Apache License, Version 2.0, which is available at
http://www.apache.org/licenses/LICENSE-2.0. In short, this free-software license permits you

http://www.apache.org/licenses/LICENSE-2.0
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to use the library for any purpose, and to modify it and combine it with other software to form a larger work.
If you choose, you may release the modified software in either source code or object code form, so may use
Adept in both open-source software and non-free proprietary software. However, distributed versions must retain
copyright notices and also distribute both the information in the NOTICES file and a copy of the Apache License.
Different license terms may be applied to your distributed software, although they must include the conditions on
redistribution provided in the Apache License. This is a just short summary; if in doubt, consult the text of the
license.

In addition to the legally binding terms of the license, it is requested that:

• You cite Hogan (2014) in publications describing algorithms and software that make use of the Adept library.
While not not a condition of the license, this is good honest practice in science and engineering.

• If you make modifications to the Adept library that might be useful to others, you release your modifications
under the terms of the Apache License, Version 2.0, so that they are available to others and could also be
merged into a future official version of Adept. If you do not state the license applied to your modifica-
tions then by default they will be under the terms of the Apache License. You will retain copyright of your
modifications, but if your modifications are written in the course of employment then under almost all cir-
cumstances (including employment by a University) it is your employer who holds the copyright. Therefore
you should obtain permission from them to release your modifications under the Apache License.

Note that other source files in the Adept package used for demonstrating and benchmarking Adept are
released under the GNU all-permissive license∗, which is specified at the top of all files it applies to.

Adept version 1.0 was released under the terms of the GNU General Public License (GPL) and so could
not be released as part of a larger work unless the entire work was released under the conditions of the GPL. It is
hoped that the switch to the Apache License will facilitate wider use of Adept.

∗The GNU all-permissive license reads: Copying and distribution of this file, with or without modification, are permitted in any medium
without royalty provided the copyright notice and this notice are preserved. This file is offered as-is, without any warranty.
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