
ADEPT fast automatic differentiation library for C++: Userguide

Robin J. Hogan∗

Document version 1.0 (September 2013) applicable to Adept version 1.0

Contents
1 Introduction... 1
2 What functionality doesAdept provide?... 2
3 InstallingAdept and compiling your own code to use it... 3
4 Code preparation... 3
5 Applying reverse-mode differentiation ... 4

5.1 Set-up stack to record derivative information.. 4
5.2 Initialize independent variables and start recording .. 5
5.3 Perform calculations to be differentiated... 5
5.4 Perform reverse-mode differentiation.. 5
5.5 Extract the final gradients .. 6

6 Computing Jacobian matrices... 6
7 Real-world usage: interfacingAdept to a minimization library.. 7
8 Calling an algorithm with and without automatic differentiation from the same program 9

8.1 Pausable recording... 10
8.2 Multiple object files per source file ... 10

9 Interfacing with software containing hand-coded Jacobians .. 11
10 Tips for the best performance ... 13
11 Member functions of theStack class ... 13
12 Member functions of theadouble object .. 15
13 Exceptions thrown by theAdept library.. 17
14 Configuring the behaviour ofAdept.. 18
15 Frequently asked questions ... 19
16 License .. 20

1 Introduction

Adept (Automatic Differentiation using Expression Templates) is a software library that enables algorithms
written in C and C++ to be automatically differentiated. It uses an operator overloading approach, so very little
code modification is required. Differentiation can be performed in forward mode (the “tangent-linear” compu-
tation), reverse mode (the “adjoint” computation), or the full Jacobian matrix can be computed. This behaviour
is common to several other libraries, namely ADOL-C (Griewank et al., 1996), CppAD (Bell, 2007) and Sacado
(Gay, 2005), but the use of expression templates, an efficient way to store the differential information and several
other optimizations mean that reverse-mode differentiation tends to be significantly faster and use less memory.
In fact,Adept is also usually only a little slower than an adjoint code you might write by hand, but immeasurably
faster in terms of user time; adjoint coding is very time consuming and error-prone. For technical details of how it
works and benchmark results, see Hogan (2013).

This user guide describes how to apply theAdept software library to your code, and many of the examples
map on to those in thetest directory of theAdept software package. Section 2 describes the functionality that the
library provides. Section 3 outlines how to install it on your system and how to compile your own code to use it.
Section 4 describes how to prepare your code for automatic differentiation, and section 5 describes how to perform
forward- and reverse-mode automatic differentiation on this code. Section 6 describes how to compute Jacobian

∗Corresponding author: Robin J. Hogan, Department of Meteorology, University of Reading. Email:r.j.hogan@reading.ac.uk

1

2. What functionality doesAdeptprovide? 2

matrices. Section 7 provides a detailed description of how to interface an algorithm implemented usingAdept with
a third-party minimization library. Section 8 describes how to call a function both with and without automatic
differentiation from within the same program. Section 9 describes how to interface to software modules that
compute their own Jacobians. Section 10 provides some tips for getting the best performance fromAdept. Section
11 describes the user-oriented member functions of theStack class that contains the differential information and
section 12 describes the member functions of the “active” double-precision typeadouble. Section 13 describes
the exceptions that can be thrown by someAdept functions. Section 14 describes how to configure the behaviour
of Adept by defining certain preprocessor variables. Finally, section 16 describes the license terms.

2 What functionality doesAdeptprovide?

Adept provides the following functionality:

Full Jacobian matrix Given the non-linear functiony = f (x) relating vectory to vectorx coded in C or C++,
after a little code modificationAdept can compute the Jacobian matrixH = ∂y/x, where the element at
row i and columnj of H is Hi, j = ∂yi/∂x j. This matrix will be computed much more rapidly and accurately
than if you simply recompute the function multiple times, each time perturbing a different element ofx by
a small amount. The Jacobian matrix is used in the Gauss-Newton and Levenberg-Marquardt minimization
algorithms.

Reverse-mode differentiationThis is a key component in optimization problems where a non-linear function
needs to be minimized but the state vectorx is too large for it to make sense to compute the full Jacobian
matrix. Atmospheric data assimilation is the canonical example in the field of meteorology. Given a nonlin-
ear functionJ(x) relating the scalar to be minimizedJ to vectorx, Adept will compute the vector of adjoints
∂J/∂x. Moreover, for a component of the code that may be expressed as a multi-dimensional non-linear
functiony = f (x), Adept can compute∂J/∂x if it is provided with the vector of input adjoints∂J/∂y. In
this case,∂J/∂x is equal to the matrix-vector productHT∂J/∂y, but it is computed here without computing
the full Jacobian matrixH. The vector∂J/∂x may then be used in a quasi-Newton minimization scheme
(e.g., Liu and Nocedal, 1989).

Forward-mode differentiation Given the non-linear functiony = f (x) and a vector of perturbationsδx, Adept
will compute the corresponding vectorδy arising from a linearization of the functionf . Formally,δy is
equal to the matrix-vector productHδx, but it is computed here without computing the full Jacobianmatrix
H. Note thatAdept is designed for the reverse case, so might not be as fast or economical in memory in
the forward mode as libraries written especially for that purpose (although Hogan, 2013, showed that it was
competitive).

Adept can currently automatically differentiate the standard mathematical operators+, -, * and/, as well as their
assignment versions+=, -=, *= and/=. It supports the mathematical functionssqrt, exp, log, log10, sin, cos,
tan, asin, acos, atan, sinh, cosh, tanh, abs andpow. The “active” variables can take part in comparison
operations==, !=, >, <, >= and<=, as well as the diagnostic functionsisfinite, isinf andisnan.

Note that at presentAdept is missing some functionality that you may require:

• Differentiation is first-order only: it cannot directly compute higher-order derivatives such as the Hessian
matrix.

• It has limited support for complex numbers; no support for mathematical functions of complex numbers, and
expressions involving operations (addition, subtraction, multiplication and division) on complex numbers are
not optimized.

• All code to be differentiated in a single program must use thesame precision. By default this is double
precision, although the library may be recompiled to use single precision or quadruple precision (the latter
only if supported by your compiler).

• Your code should operate on variables individually: they can be stored in C-style arrays orstd::vector
types, but if you use containers that allow operations on entire arrays, such as thestd::valarray type, then

3. InstallingAdeptand compiling your own code to use it 3

some array-wise functionality (such as mathematical functions applied to the whole array and multiplying
an array of active variables by an ordinary non-active scalar) will not work.

• It can be applied to C and C++ only;Adept could not be written in Fortran since the language provides no
template capability.

It is hoped that future versions will remedy these limitations (and it is hoped that a future version of Fortran will
support templates).

3 Installing Adeptand compiling your own code to use it

The code has been tested on Linux with the GNU C++ compiler, but should compile on any Unix-like
system with a C++98 compliant compiler. On a Unix-like system, do the following:

1. Unpack the package (tar xvfz adept-1.x.tar.gz on Linux) andcd to the directoryadept-1.x
(wherex is the number of the most recent subversion).

2. Compile the code by typingmake. You may need to configure a few things first, such as the compiler, by
editing theMakefile include file first. See also section 14 for ways to configure the behaviour of Adept.

3. This will create the static librarylib/libadept.a. To copy this and the include fileinclude/adept.h
into/usr/local, usesu to log-in as the superuser and typemake install. To first specify another install
directory, edit thePREFIX variable inMakefile.

To compile source files that use theAdept library, you need to make sure thatadept.h is in your in-
clude path. If this file is located in a directory that is not inthe default include path, add something like
-I/home/fred/include to the compiler command line. At the linking stage, add-ladept to the command
line to tell the linker to look for thelibadept.a static library. If this file is in a non-standard location, also add
something like-L/home/fred/lib before the-ladept argument to specify its location. Section 8.2 provdes an
example Makefile for compiling code that uses theAdept library.

4 Code preparation

If you have used ADOL-C, CppAD or Sacado then you will alreadybe familiar with what is involved
in applying an operator-overloading automatic differentiation package to your code. The user interface toAdept
differs from these only in the detail. It is assumed that you have an algorithm written in C or C++ that you wish
to differentiate. This section deals with the modificationsneeded to your code, while section 5 describes the small
additional amount of code you need to write to differentiateit.

In all source files containing code to be differentiated, youneed to include theadept.h header file and
import theadouble type from theadept namespace. Assuming your code uses double precision, you then search
and replacedouble with the “active” equivalentadouble, but doing this only for those variables whose values
depend on the independent input variables. If you wish to usea different precision, or to enable your code to
be easily recompiled to use different precisions, then you may alternatively use the genericReal type from the
adept namespace with its active equivalentaReal. Section 14 describes how to configure these types to represent
single, double or quadruple precision, but be aware that accumulation of round-off error can make the accuracy of
derivatives computed using single precision insufficient for minimization algorithms. For now we consider only
double precision.

Consider the following contrived algorithm from Hogan (2013) that takes two inputs and returns one output:

double algorithm(const double x[2]) {
double y = 4.0;
double s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

The modified code would look like this:

5. Applying reverse-mode differentiation 4

#include "adept.h"
using adept::adouble;

adouble algorithm(const adouble x[2]) {
adouble y = 4.0;
adouble s = 2.0*x[0] + 3.0*x[1]*x[1];
y *= sin(s);
return y;

}

Changes like this need to be done in all source files that form part of an algorithm to be differentiated.
If you need to access the real number underlying anadouble variablea, for example in order to use it as

an argument to thefprintf function, then usea.value() or adept::value(a). Any mathematical operations
performed on this real number will not be differentiated.

You may useadouble as the template argument of a Standard Template Library (STL) vector type (i.e.
std::vector<adouble>), or indeed any container where you access individual elements one by one. For types
allowing mathematical operations on the whole object, suchas the STLcomplex andvalarray types, you will
find that although you can multiply onestd::complex<adouble> or std::valarray<adouble> object by
another, mathematical functions (exp, sin etc.) will not work when applied to whole objects, and neither will
some simple operations such as multiplying these types by anordinary (non-active)double variable. Moreover,
the performance is not great because expressions cannot be fully optimized when in these containers. It is expected
that a future version ofAdept will include its own complex and vector types that overcome these limitations.

5 Applying reverse-mode differentiation

Suppose you wanted to create a version ofalgorithm that returned not only the result but also the gradient
of the result with respect to its inputs, you would do this:

#include "adept.h"
double algorithm_and_gradient(

const double x_val[2], // Input values
double dy_dx[2]) { // Output gradients

adept::Stack stack, // Where the derivative information is stored
using adept::adouble; // Import adouble from adept
adouble x[2] = {x_val[0], x_val[1]}; // Initialize active input variables
stack.new_recording(); // Start recording
adouble y = algorithm(x); // Call version overloaded for adouble args
y.set_gradient(1.0); // Defines y as the objective function
stack.compute_adjoint(); // Run the adjoint algorithm
dy_dx[0] = x[0].get_gradient(); // Store the first gradient
dy_dx[1] = x[1].get_gradient(); // Store the second gradient
return y.value(); // Return the result of the simple computation

}

The component parts of this function are in a specific order, and if this order is violated then the code will not run
correctly.

5.1 Set-up stack to record derivative information

adept::Stack stack;

TheStack object is where the differential version of the algorithm will be stored. When initialized, it makes itself
accessible to subsequent statements via a global variable,but using thread-local storage to ensure thread safety.
It must be initialized before the firstadouble object is instantiated, because such an instantiation registers the
adouble object with the currently active stack. Otherwise the code will crash with a segmentation fault.

In the example here, theStack object is local to the scope of the function. If anotherStack object had
been initialized by the calling function and so was active atthe point of entry to the function, then the localStack

object would throw anadept::stack already active exception (see Test 3 described attest/README in the
Adept package if you want to use multipleStack objects in the same program). A disadvantage of localStack

5. Applying reverse-mode differentiation 5

objects is that the memory it uses must be reallocated each time the function is called. This can be overcome in
several ways:

• Declare theStack object to bestatic, which means that it will persist between function calls. This has
the disadvantage that you won’t be able to use otherStack objects in the program without deactivating this
one first (see Test 3 in theAdept package, referred to above, for how to do this).

• Initialize Stack in the main body of the program and pass a reference to it to the
algorithm and gradient function, so that it does not go out of scope between calls.

• Put it in a class so that it is accessible to member functions;this approach is demonstrated in section 7.

5.2 Initialize independent variables and start recording

adouble x[2] = {x_val[0], x_val[1]};
stack.new_recording();

The first line here simply copies the input values to the algorithm into adouble variables. These are theinde-
pendent variables, but note that there is no obligation for these to be stored asone array (as in CppAD), and for
forward- and reverse-mode automatic differentiation you do not need to tellAdept explicitly via a function call
which variables are the independent ones. The next line clears all differential statements from the stack so that it
is ready for a new recording of differential information.

Note that the first line here actually stores two differential statements,δx[0]=0 andδx[1]=0, which are
immediately cleared by thenew recording function call. To avoid the small overhead of storing redundant
information on the stack, we could replace the first line with

x[0].set_value(x_val[0]);
x[1].set_value(x_val[1]);

or

adept::set_values(x, 2, x_val);

which have the effect of setting the values ofx without storing the equivalent differential statements.
Users ofAdept version 0.9 should note that thenew recording function replaces thestart function

call, which had to be putbefore the independent variables were initialized. The problem with this was that the
independent variables had to be initialized with theset value or set values functions, otherwise the gradients
coming out of the automatic differentiation would all be zero. Since it was easy to forget this,new recordingwas
introduced to allow the independent variables to be assigned in the normal way using the assignment operator (=).
But don’t just replacestart in your version-0.9-compatible code withnew recording; the latter must appear
after the independent variables have been initialized.

5.3 Perform calculations to be differentiated

adouble y = algorithm(x);

The algorithm is called, and behind the scenes the equivalent differential statement for every mathematical state-
ment is stored in the stack. The result of the forward calculation is stored iny, known as a dependent variable.
This example has one dependent variable, but any number is allowed, and they could be returned in another way,
e.g. by passing a non-constant array to algorithm that is filled with the final values when the function returns.

5.4 Perform reverse-mode differentiation

y.set_gradient(1.0);
stack.compute_adjoint();

The first line sets the initial gradient (or adjoint) ofy. In this example, we want the output gradients to be the
derivatives ofy with respect to each of the independent variables; to achieve this, the initial gradient ofy must be
unity.

6. Computing Jacobian matrices 6

More generally, ify was only an intermediate value in the computation of objective functionJ, then for the
outputs of the function to be the derivatives ofJ with respect to each of the independent variables, we would need
to set the gradient ofy to ∂J/∂y. In the case of multiple intermediate values, a separate call to set gradient is
needed for each intermediate value. Ify was an array of lengthn then the gradient of each element could be set to
the values in adouble arrayy ad using

adept::set_gradients(y, n, y_ad);

The compute adjoint() member function of stack performs the adjoint calculation,sweeping in re-
verse through the differential statements stored on the stack. Note that this must be preceded by at least
one set gradient or set gradients call, since the first such call initializes the list of gradients for
compute adjoint() to act on. Otherwise,compute adjoint() will throw a gradients not initialized

exception.

5.5 Extract the final gradients

dy_dx[0] = x[0].get_gradient();
dy_dx[1] = x[1].get_gradient();

These lines simply extract the gradients of the objective function with respect to the two independent variables.
Alternatively we could have extracted them simultaneouslyusing

adept::get_gradients(x, 2, dy_dx);

To do forward-mode differentiation in this example would involve setting the initial gradients ofx instead
of y, calling the member functioncompute tangent linear() instead ofcompute adjoint(), and extracting
the final gradients fromy instead ofx.

6 Computing Jacobian matrices

Until now we have considered a function with two inputs and one output. Consider the following more
general function whose declaration is

void algorithm2(int n, const adouble* x, int m, adouble* y);

wherex points to then independent (input) variables andy points to them dependent (output) variables. The
following function would return the full Jacobian matrix:

#include <vector>
#include "adept.h"
void algorithm2_jacobian(

int n, // Number of input values
const double* x_val, // Input values
int m, // Number of output values
double* y_val, // Output values
double* jac) { // Output Jacobian matrix

using adept::adouble; // Import Stack and adouble from adept
adept::Stack stack; // Where the derivative information is stored
std::vector<adouble> x(n); // Vector of active input variables
adept::set_values(&x[0], n, x_val); // Initialize adouble inputs
adept.new_recording(); // Start recording
std::vector<adouble> y(m); // Create vector of active output variables
algorithm2(n, &x[0], m, &y[0]); // Run algorithm
stack.independent(&x[0], n); // Identify independent variables
stack.dependent(&y[0], m); // Identify dependent variables
stack.jacobian(jac); // Compute & store Jacobian in jac

}

Note that:

• Theindependent member function of stack is used to identify the independentvariables, i.e. the variables
that the derivatives in the Jacobian matrix will be with respect to. In this example there aren independent
variables located together in memory and so can be identifiedall at once. Multiple calls are possible to
identify further independent variables. To identify a single independent variable, callindependent with
just one argument, the independent variable (not as a pointer).

7. Real-world usage: interfacingAdeptto a minimization library 7

• Thedependent member function of stack identifies the dependent variables, and its usage is identical to
independent.

• The memory provided to store the Jacobian matrix (pointed toby jac) must be a one-dimensional array of
sizem×n, wherem is the number of dependent variables andn is the number of independent variables.

• The resulting matrix is stored in the sense of the index representing the dependent variables varying fastest
(column-major order). To get row-major order, call thejacobian function with a second argument oftrue
(see section 11).

• Internally, the Jacobian calculation is performed by multiple forward or reverse passes, whichever would be
faster (dependent on the numbers of independent and dependent variables).

• The use ofstd::vector<adouble> rather thannew adouble[n] ensures no memory leaks in the case
of an exception being thrown, since the memory associated with x andy will be automatically deallocated
when they go out of scope.

7 Real-world usage: interfacingAdeptto a minimization library

Suppose we want to find the vectorx that minimizes a cost functionJ(x) that consists of a large algorithm
coded using theAdept library and encapsulated within a C++ class. In this sectionwe illustrate how it may be
interfaced to a third-party minimization algorithm with a C-style interface, specifically the free one in the GNU
Scientific Library. The full working version of this example, using the N-dimensional Rosenbrock banana function
as the function to be minimized, is “Test 4” in thetest directory of theAdept software package. The interface to
the algorithm is as follows:

#include <vector>
#include "adept.h"
using adept::adouble;
class State {
public:
// Construct a state with n state variables
State(int n) { active_x_.resize(n); x_.resize(n); }
// Minimize the function, returning true if minimization successful, false otherwise
bool minimize();
// Get copy of state variables after minimization
void x(std::vector<double>& x_out) const;
// For input state variables x, compute the function J(x) and return it
double calc_function_value(const double* x);
// For input state variables x, compute function and put its gradient in dJ_dx
double calc_function_value_and_gradient(const double* x, double* dJ_dx);
// Return the size of the state vector
unsigned int nx() const { return active_x_.size(); }

protected:
// Active version: the algorithm is contained in the definition of this function
adouble calc_function_value(const adouble* x);
// DATA
adept::Stack stack_; // Adept stack object
std::vector<adouble> active_x_; // Active state variables

};

The algorithm itself is contained in the definition ofcalc function value(const adouble*), which is im-
plemented usingadouble variables (following the rules in section 4). However, the public interface to the class
uses only standarddouble types, so the use ofAdept is hidden to users of the class. Of course, a complicated
algorithm may be implemented in terms of multiple classes that do exchange data viaadouble objects. We will be
using a quasi-Newton minimization algorithm that calls thealgorithm many times with trial vectorsx, and for each
call may request not only the value of the function, but also its gradient with respect tox. Thus the public interface
providescalc function value(const double*) andcalc function value and gradient, which could
be implemented as follows:

7. Real-world usage: interfacingAdeptto a minimization library 8

double State::calc_function_value(const double* x) {
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
stack_.new_recording();
return value(calc_function_value(&active_x_[0]));

}

double State::calc_function_value_and_gradient(const double* x, double* dJ_dx) {
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
stack_.new_recording();
adouble J = calc_function_value(&active_x_[0]);
J.set_gradient(1.0);
stack_.compute_adjoint();
adept::get_gradients(&active_x_[0], nx(), dJ_dx);
return value(J);

}

The first function simply copies thedouble inputs into an adouble vector and runs the version of
calc function value for adouble arguments. Obviously there is an inefficiency here in that gradients are
recorded that are then not used, and this function would be typically 2.5–3 times slower than an implementation
of the algorithm that did not store gradients. Section 8 describes two ways to overcome this problem. The second
function above implements reverse-mode automatic differentiation as described in section 5.

Theminimize member function could be implemented using GSL as follows:

#include <iostream>
#include <gsl/gsl_multimin.h>

bool State::minimize() {
// Minimizer settings
const double initial_step_size = 0.01;
const double line_search_tolerance = 1.0e-4;
const double converged_gradient_norm = 1.0e-3;
// Use the "limited-memory BFGS" quasi-Newton minimizer
const gsl_multimin_fdfminimizer_type* minimizer_type
= gsl_multimin_fdfminimizer_vector_bfgs2;

// Declare and populate structure containing function pointers
gsl_multimin_function_fdf my_function;
my_function.n = nx();
my_function.f = my_function_value;
my_function.df = my_function_gradient;
my_function.fdf = my_function_value_and_gradient;
my_function.params = reinterpret_cast<void*>(this);

// Set initial state variables using GSL’s vector type
gsl_vector *x;
x = gsl_vector_alloc(nx());
for (unsigned int i = 0; i < nx(); ++i) gsl_vector_set(x, i, 1.0);

// Configure the minimizer
gsl_multimin_fdfminimizer* minimizer
= gsl_multimin_fdfminimizer_alloc(minimizer_type, nx());

gsl_multimin_fdfminimizer_set(minimizer, &my_function, x,
initial_step_size, line_search_tolerance);

// Begin loop
size_t iter = 0;
int status;
do {
++iter;
// Perform one iteration
status = gsl_multimin_fdfminimizer_iterate(minimizer);

// Quit loop if iteration failed
if (status != GSL_SUCCESS) break;

// Test for convergence

8. Calling an algorithm with and without automatic differentiation from the same program 9

status = gsl_multimin_test_gradient(minimizer->gradient, converged_gradient_norm);
}
while (status == GSL_CONTINUE && iter < 100);

// Free memory
gsl_multimin_fdfminimizer_free(minimizer);
gsl_vector_free(x);

// Return true if successfully minimized function, false otherwise
if (status == GSL_SUCCESS) {
std::cout << "Minimum found after " << iter << " iterations\n";
return true;

}
else {
std::cout << "Minimizer failed after " << iter << " iterations: "

<< gsl_strerror(status) << "\n";
return false;

}
}

The GSL interface requires three functions to be defined, each of which takes a vector of state variablesx as
input: my function value, which returns the value of the function;my function gradient, which returns the
gradient of the function with respect tox; andmy function value and gradient, which returns the value and
the gradient of the function. These functions are provided to GSL as function pointers (see above), but since GSL
is a C library, we need to use the ‘extern "C"’ specifier in their definition. Thus the function definitionswould
be:

extern "C"
double my_function_value(const gsl_vector* x, void* params) {

State* state = reinterpret_cast<State*>(params);
return state->calc_function_value(x->data);

}

extern "C"
void my_function_gradient(const gsl_vector* x, void* params, gsl_vector* gradJ) {

State* state = reinterpret_cast<State*>(params);
state->calc_function_value_and_gradient(x->data, gradJ->data);

}

extern "C"
void my_function_value_and_gradient(const gsl_vector* x, void* params,

double* J, gsl_vector* gradJ) {
State* state = reinterpret_cast<State*>(params);

*J = state->calc_function_value_and_gradient(x->data, gradJ->data);
}

When thegsl multimin fdfminimizer iterate function is called, it chooses a search direction and performs
several calls of these functions to approximately minimizethe function along this search direction. Thethis
pointer (i.e. the pointer to theState object), which was provided to themy function structure in the definition
of theminimize function above, is provided as the second argument to each ofthe three functions above. Unlike
in C, in C++ this pointer needs to be cast back to a pointer to aState type, hence the use ofreinterpret cast.

That’s it! A call tominimize should successfully minimize well behaved differentiablemulti-dimensional
functions. It should be straightforward to adapt the above to work with other minimization libraries.

8 Calling an algorithm with and without automatic different iation from the same pro-
gram

Thecalc function value(const double*) member function defined in section 7 is sub-optimal in
that it simply calls thecalc function value(const adouble*) member function, which not only computes
the value of the function, it also records the derivative information of all the operations involved. This information
is then ignored. This overhead makes the function typically2.5–3 times slower than it needs to be, although

8. Calling an algorithm with and without automatic differentiation from the same program 10

sometimes (specifically for loops containing no trancendental functions) the difference between an algorithm coded
in terms ofdoubles and the same algorithm coded in terms ofadoubles can exceed a factor of 10 (Hogan, 2013).
The impact on the computational speed of the entire minimization process depends on how many requests are made
for the function value only as opposed to the gradient of the function, and can be significant. We require a way
to avoid the overhead ofAdept computing the derivative information for calls tocalc function value(const

double*), without having to maintain two versions of the algorithm, one coded in terms ofdoubles and the other
in terms ofadoubles. The two ways to achieve this are now described.

8.1 Pausable recording

The first method involves compiling the entire code with theADEPT RECORDING PAUSABLE preprocessor
variable defined, which can be done by adding an argument-DADEPT RECORDING PAUSABLE to the compler
command line. This modifies the behaviour of mathematical operations performed onadouble variables: instead
of performing the operation and then storing the derivativeinformation, it performs the operation and then only
stores the derivative information if theAdept stack is not in the “paused” state. We then use the following member
function definition instead of the one in section 7:

double State::calc_function_value(const double* x) {
stack_.pause_recording();
for (unsigned int i = 0; i < nx(); ++i) active_x_[i] = x[i];
double J = value(calc_function_value(&active_x_[0]));
stack_.continue_recording();
return J;

}

By pausing the recording for all operations onadouble objects, most of the overhead of storing derivative infor-
mation is removed. The extra run-time check to see whether the stack is in the paused state, which is carried out
by mathematical operations involvingadouble objects, generally adds a small overhead. However, in algorithms
where most of the number crunching occurs in loops containing no trancendental functions, even if the stack is in
the paused state, the presence of the check can prevent the compiler from agressively optimizing the loop. In that
instance the second method may be preferable.

8.2 Multiple object files per source file

The second method involves compiling each source file containing functions with adouble argu-
ments twice. The first time, the code is compiled normally to produce an object file containing com-
piled functions including automatic differentiation. Thesecond time, the code is compiled with the
-DADEPT NO AUTOMATIC DIFFERENTIATION flag on the compiler command line. This instructs theadept.h

header file to turn off automatic differentiation by definingtheadouble type to be an alias of thedouble type.
This way, a second set of object files are created containing overloaded versions of the same functions as the first
set but this time without automatic differentiation. Theseobject files can be compiled together to form one ex-
ecutable. In the example presented in section 7, thecalc function value function would be one that would
be compiled twice in this way, once to provide thecalc function value(const adouble*) version and the
other to provide thecalc function value(const double*) version. Note that any functions that do not in-
cludeadouble arguments must be compiled only once, because otherwise thelinker will complain about multiple
versions of the same function.

The following shows a Makefile from a hypothetical project that compiles two source files
(algorithm1.cpp andalgorithm2.cpp) twice and a third (main.cpp) once:

Specify compiler and flags
CPP = g++
CPPFLAGS = -Wall -O3 -g
Normal object files to be created
OBJECTS = algorithm1.o algorithm2.o main.o
Object files created with no automatic differentiation
NO_AD_OBJECTS = algorithm1_noad.o algorithm2_noad.o
Program name

9. Interfacing with software containing hand-coded Jacobians 11

PROGRAM = my_program
Include-file location
INCLUDES = -I/usr/local/include
Library location and name, plus the math library
LIBS = -L/usr/local/lib -lm -ladept

Rule to build the program (typing "make" will use this rule)
$(PROGRAM): $(OBJECTS) $(NO_AD_OBJECTS)

$(CPP) $(CPPFLAGS) $(OBJECTS) $(NO_AD_OBJECTS) $(LIBS) -o $(PROGRAM)
Rule to build a normal object file (used to compile all objects in OBJECTS)
%.o: %.cpp

$(CPP) $(CPPFLAGS) $(INCLUDES) -c $<
Rule to build a no-automatic-differentiation object (used to compile ones in NO_AD_OBJECTS)
%_noad.o: %.cpp

$(CPP) $(CPPFLAGS) $(INCLUDES) -DADEPT_NO_AUTOMATIC_DIFFERENTIATION -c $< -o $@

There is a further modification required with this approach,which arises because if a header
file declares both thedouble and adouble versions of a function, then when compiled with
-DADEPT NO AUTOMATIC DIFFERENTIATION it appears to the compiler that the same function is declaredtwice,
leading to a compile-time error. This can be overcome by using the preprocessor to hide theadouble version if
the code is compiled with this flag, as follows (using the example from section 7):

#include "adept.h"
class State {
public:
...
double calc_function_value(const double* x);

protected:
#ifndef ADEPT_NO_AUTOMATIC_DIFFERENTIATION

adouble calc_function_value(const adouble* x);
#endif

...
}

A final nuance is that if the code contains anadouble objectx, thenx.value() will work fine in the
compilation whenx is indeed of typeadouble, but in the compilation when it is set to a simpledouble variable,
thevalue() member function will not be found. Hence it is better to useadept::value(x), which returns a
double regardless of the type ofx, and works regardless of whether the code was compiled with or without the
-DADEPT NO AUTOMATIC DIFFERENTIATION flag.

9 Interfacing with software containing hand-coded Jacobians

Often a complicated algorithm will include multiple components. Components of the code written in C or
C++ for which the source is available are straightforward toconvert to usingAdept, following the rules in section 4.
For components written in Fortran, this is not possible, butif such components have their own hand-coded Jacobian
then it is possible to interfaceAdept to them. More generally, in certain situations automatic differentiation is much
slower than hand-coding (see the Lax-Wendroff example in Hogan, 2013) and we may wish to hand-code certain
critical parts. In general the Jacobian matrix is quite expensive to compute, so this interfacing strategy makes most
sense if the component of the algorithm has a small number of inputs or a small number of outputs. A full working
version of the following example is given as “Test 3” in thetest directory of theAdept package.

Consider the example of a radiative transfer model for simulating satellite microwave radiances at two
wavelengths,I and J, which takes as input the surface temperatureTs and the vertical profile of atmospheric
temperatureT from a numerical weather forecast model. Such a model would be used in a data assimilation
system to assimilate the temperature information from the satellite observations into the weather forecast model.
In addition to returning the radiances, the model returns the gradient∂I/∂Ts and the gradients∂I/∂Ti for all height
layersi between 1 andn, and likewise for radianceJ. The interface to the radiative transfer model is the following:

void simulate_radiances(int n, // Size of temperature array
// Input variables:
double surface_temperature,

9. Interfacing with software containing hand-coded Jacobians 12

const double* temperature,
// Output variables:
double radiance[2],
// Output Jacobians:
double dradiance_dsurface_temperature[2],
double* dradiance_dtemperature);

The calling function needs to allocate2*n elements for the temperature Jacobiandradiance dtemperature to
be stored, and the stored Jacobian will be oriented such thatthe radiance index varies fastest.

Adept needs to be told how to relate the radiance perturbationsδI andδJ, to perturbations in the input
variables,δTs andδTi (for all layersi). Mathematically, we wish the following relationship to bestored within the
Adept stack:

δI =
∂I
∂Ts

δTs +
n∑

i=1

∂I
∂Ti

δTi. (1)

This is achieved with the following wrapper function, whichhasadouble inputs and outputs and therefore can be
called from within other parts of the algorithm that are coded in terms ofadouble objects:

void simulate_radiances_wrapper(int n,
const adouble& surface_temperature,
const adouble* temperature,
adouble radiance[2]) {

// Create inactive (double) versions of the active (adouble) inputs
double st = value(surface_temperature);
std::vector<double> t(n);
for (int i = 0; i < n; ++i) t[i] = value(temperature[i]);

// Declare variables to hold the inactive outputs and their Jacobians
double r[2];
double dr_dst[2];
std::vector<double> dr_dt(2*n);

// Call the non-Adept function
simulate_radiances(n, st, &t[0], &r[0], dr_dst, &dr_dt[0]);

// Copy the results into the active variables, but use set_value in order
// not to write any equivalent differential statement to the Adept stack
radiance[0].set_value(r[0]);
radiance[1].set_value(r[1]);

// Loop over the two radiances and add the differential statements to the Adept stack
for (int i = 0; i < 2; ++i) {
// Add the first term on the right-hand-side of Equation 1 in the text
radiance[i].add_derivative_dependence(surface_temperature, dr_dst[i]);
// Now append the second term on the right-hand-side of Equation 1. The third argument
// "n" of the following function says that there are n terms to be summed, and the fourth
// argument "2" says to take only every second element of the Jacobian dr_dt, since the
// derivatives with respect to the two radiances have been interlaced. If the fourth
// argument is omitted then relevant Jacobian elements will be assumed to be contiguous
// in memory.
radiance[i].append_derivative_dependence(temperature, &dr_dt[i], n, 2);

}
}

In this example, the form ofadd derivative dependence for one variable on the right-hand-side of the deriva-
tive expression has been used, and the form ofappend derivative dependence for an array of variables on
the right-hand-side has been used. As described in section 12, both functions have forms that take single variables
and arrays as arguments. Note also that the use ofstd::vector<double> rather thannew double[n] ensures
that if simulate radiances throws an exception, the memory allocated to holddr dt will be freed correctly.

10. Tips for the best performance 13

10 Tips for the best performance

• If you are working with single-threaded code, or in a multi-threaded program but with only one
thread using a Stack object, then you can get slightly fastercode by compiling all of your code with
-DADEPT STACK THREAD UNSAFE. This uses a standard (i.e. non-thread-local) global variable to point to
the currently active stack object, which is slightly fasterto access.

• If you compile with the-g option to store debugging symbols, your object files and executable will be much
larger because every mathematical statement in the file willhave the name of its associated templated type
stored in the file, and these names can be long. Once you have debugged your code, you may wish to omit
debugging symbols from production versions of the executable. There appears to be no performance penalty
associated with the debugging symbols, at least with the GNUC++ compiler.

• A high compiler optimization setting is recommended to inline the function calls associated with mathemat-
ical expressions. On the GNU C++ compiler, the-O3 setting is recommended.

• By default the Jacobian functions are compiled to process a strip of rows or columns of the Jacobian ma-
trix at once. The optimum width of the strip depends on your platform, and you may wish to change
it. To make the Jacobian functions processn rows or columns at once, recompile theAdept library with
-DADEPT MULTIPASS SIZE=n.

• If you suspect memory usage is a problem, you may investigatethe memory used byAdept by simply sending
yourStack object to a stream, e.g. “std::cout << stack”. You may also use thememory() member
function, which returns the total number of bytes used. Further details of similar functions is given in section
11.

11 Member functions of theStack class

This section describes the user-oriented member functionsof theStack class. Some functions have ar-
guments with default values; if these arguments are omittedthen the default values will be used (for example, if
only one argument is supplied to thejacobian function below, then it will be executed as if called with a second
argumentfalse). Some of these functions throwAdept exceptions, defined in section 13.

Stack(bool activate immediately = true) The constructor for theStack class. NormallyStack ob-
jects are constructed with no arguments, which means that the object will attempt to make itself the currently
active stack by placing a pointer to itself into a global variable. If anotherStack object is currently active,
then the present one will be fully constructed, left in the unactivated state, and anstack already active

exception will be thrown. If aStack object is constructed with an argument “false”, it will be started in
an unactivated state, and a subsequent call to its member functionactivate will be needed to use it.

void new recording() Clears all the information on the stack in order that a new recording can be started.
Specifically this function clears all the differential statements, the list of independent and dependent variables
(used in computing Jacobian matrices) and the list of gradients used by thecompute tangent linear and
compute adjoint functions. Note that this function leaves the memory allocated to reduce the overhead
of reallocation in the new recordings.

bool pause recording() Stops recording differential information every time anadouble statement is ex-
ecuted. This is useful if within a single program an algorithm needs to be run both with and with-
out automatic differentiation. This option is only effective within compilation units compiled with
ADEPT RECORDING PAUSABLE defined; if it is, the function returnstrue, otherwise it returnsfalse. Fur-
ther information on using this and the following function are provided in section 8.1.

bool continue recording() Instruct a stack that may have previously been put in a pausedstate to now
continue recording differential information as normal. This option is only effective within compilation units
compiled withADEPT RECORDING PAUSABLE defined; if it is, the function returnstrue, otherwise it returns
false.

11. Member functions of theStack class 14

bool is recording() Returnsfalse if recording has been paused withpause recording() and the code
has been compiled withADEPT RECORDING PAUSABLE defined. Otherwise returnstrue.

void compute tangent linear() Perform a tangent-linear calculation (forward-mode differentiation) using
the stored differential statements. Before calling this function you need call theadouble::set gradient

or set gradients function (see section 12) on the independent variables to set the initial gradients, oth-
erwise the function will throw agradients not initialized exception. This function is synonymous
with forward().

void compute adjoint() Perform an adjoint calculation (reverse-mode differentiation) using the stored
differential statements. Before calling this function youneed call theadouble::set gradient or
set gradients function on the dependent variables to set the initial gradients, otherwise the function
will throw a gradients not initialized exception. This function is synonymous withreverse().

void independent(const adouble& x) Before computing Jacobian matrices, you need to identify the in-
dependent and dependent variables, which correspond to thecolumns and rows of he Jacobian, respectively.
This function addsx to the list of independent variables. If it is thenth variable identified in this way, the
nth column of the Jacobian will correspond to derivatives with respect tox.

void dependent(const adouble& y) Add y to the list of dependent variables. If it is themth variable iden-
tified in this way, themth row of the Jacobian will correspond to derivatives ofy with respect to each of the
independent variables.

void independent(const adouble* x ptr, size t n) Add n independent variables to the list, which
must be stored consecutively in memory starting at the memory pointed to byx ptr.

void dependent(const adouble* y ptr, size t n) Add n dependent variables to the list, which must
be stored consecutively in memory starting at the memory pointed to byy ptr.

void jacobian(double* jacobian out) Compute the Jacobian matrix, i.e., the gradient of them dependent
variables (identified with thedependent(...) function) with respect to then independent variables (iden-
tified with independent(...). The result is returned in the memory pointed to byjacobian out, which
must have been allocated to holdm×n values. The result is stored in column-major order, i.e., them diemen-
sion of the matrix varies fastest. If no dependents or independents have been identified, then the function
will throw a dependents or independents not identified exception. In practice, this function calls
jacobian forward if n ≤ m andjacobian reverse if n > m.

void jacobian forward(double* jacobian out) Compute the Jacobian matrix by executingn forward
passes through the stored list of differential statements;this is typically faster thanjacobian reverse for
n ≤ m.

void jacobian reverse(double* jacobian out) Compute the Jacobian matrix by executingm reverse
passes through the stored list of differential statements;this is typically faster thanjacobian forward

for n > m.

void clear gradients() Clear the gradients set with theset gradient member function of theadouble
class. This enables multiple adjoint and/or tangent-linear calculations to be performed with the same record-
ing.

void clear independents() Clear the list of independent variables, enabling a new Jacobian matrix to be
computed from the same recording but for a different set of independent variables.

void clear dependents() Clear the list of dependent variables, enabling a new Jacobian matrix to be com-
puted from the same recording but for a different set of dependent variables.

size t n independents() Return the number of independent variables that have been identified.

size t n dependents() Return the number of dependent variables that have been identified.

12. Member functions of theadouble object 15

size t n statements() Return the number of differential statements in the recording.

size t n operations() Return the total number of operations in the recording, i.e the total number of terms
on the right-hand-side of all the differential statements.

size t max gradients() Return the number of working gradients that need to be storedin order to perform a
forward or reverse pass.

std::size t memory() Return the number of bytes currently used to store the differential statements and the
working gradients. Note that this does not include memory allocated but not currently used.

size t n gradients registered() Each time anadouble object is created, it is allocated a unique index
that is used to identify its gradient in the recorded differential statements. When the object is destructed,
its index is freed for reuse. This function returns the number of gradients currently registered, equal to the
number ofadouble objects currently created.

void print status(std::ostream& os = std::cout) Print the current status of theStack object, such
as number of statements and operations stored and allocated, to the stream specified byos, or standard
output if this function is called with no arguments. SendingtheStack object to the stream using the “<<”
operator results in the same behaviour.

void print statements(std::ostream& os = std::cout) Print the list of differential statements to the
specified stream (or standard output if not specified). Each line corresponds to a separate statement, for
example “d[3] = 1.2*d[1] + 3.4*d[2]”.

bool print gradients(std::ostream& os = std::cout) Print the vector of gradients to the specified
stream (or standard output if not specified). This function returnsfalse if no set gradient function
has been called to set the first gradient and initialize the vector, andtrue otherwise. To diagnose what
compute tangent linear andcompute adjoint are doing, it can be useful to callprint gradients

immediately before and after.

void activate() Activate theStack object by copying itsthis pointer to a global variable that will be
accessed by subsequent operations involvingadouble objects. If anotherStack is already active, a
stack already active exception will be thrown. To check whether this is the case before calling
activate(), check that theactive stack() function (described below) returns0.

void deactivate() Deactivate theStack object by checking whether the global variable holding the pointer
to the currently activeStack is equal tothis, and if it is, setting it to0.

bool is active() Returnstrue if the Stack object is the currently active one,false otherwise.

void start() This function was present in version 0.9 to activate aStack object, since in that version they
were not constructed in an activated state. This function has now been deprecated and will always throw a
feature not available exception.

The following non-member functions are provided in theadept namespace:

adept::Stack* active stack() Returns a pointer to the currently activeStack object, or0 if there is none.

bool is thread unsafe() Returns true if your code has been compiled with
ADEPT STACK THREAD UNSAFE, false otherwise.

12 Member functions of theadouble object

This section describes the user-oriented member functionsof the adouble class. Some functions have
arguments with default values; if these arguments are omitted then the default values will be used. Some of these
functions throwAdept exceptions, defined in section 13.

12. Member functions of theadouble object 16

double value() Return the underlyingdouble value.

void set value(double x) Set the value of theadouble object tox, without storing the equivalent differen-
tial statement in the currently active stack.

void set gradient(const double& gradient) Set the gradient corresponding to thisadouble variable.
The first call of this function (for anyadouble variable) after a new recording is made also initial-
izes the vector of working gradients. This function should be called for one or moreadouble ob-
jects after a recording has been made but before a call toStack::compute tangent linear() or
Stack::compute adjoint().

void get gradient(double& gradient) Set gradient to the value of the gradient correspond-
ing to this adouble object. This function is used to extract the result after a call to
Stack::compute tangent linear() orStack::compute adjoint(). If theset gradient function
was not called since the last recording was made, this function will throw agradients not initialized

exception. The function can also throw agradient out of range exception if newadouble objects were
created since the firstset gradient function was called.

void add derivative dependence(const adouble& r, const adouble& g) Add a differential state-
ment to the currently active stack of the formδl = g × δr, wherel is theadouble object from which
this function is called. This function is needed to interface to software containing hand-coded Jacobians, as
described in section 9; in this caseg is the gradient∂l/∂r obtained from such software.

void append derivative dependence(const adouble& r, const adouble& g) Assuming that the
sameadouble object has just had itsadd derivative dependence member function called, this
function appends + g × δr to the most recent differential statement on the stack. If the calling
adouble object is different, then awrong gradient exception will be thrown. Note that multiple
append derivative dependence calls can be made in succession.

void add derivative dependence(const adouble* r, const double* g,

size t n = 1, size t m stride = 1)
Add a differential statement to the currently active stack of the formδl =

∑n−1
i=0 m[i] × δr[i], wherel

is theadouble object from which this function is called. If theg stride argument is provided, then the
index to theg array will bei × g stride rather thani. This is useful if the Jacobian provided is oriented
such that the relevant gradients forl are not spaced consecutively.

void append derivative dependence(const adouble* rhs, const double* g,

size t n = 1, size t g stride = 1)
Assuming that the sameadouble object has just called theadd derivative dependence function, this
function appends+

∑n−1
i=0 m[i]× δr[i] to the most recent differential statement on the stack. If the calling

adouble object is different, then awrong gradient exception will be thrown. Theg stride argument
behaves the same way as in the previous function described.

The following non-member functions are provided in theadept namespace:

double value(const adouble& x) Returns the underlying value ofx as adouble. This is useful to
enablex to be used infprintf function calls. It is generally better to useadept::value(x)
rather than x.value(), because the former also works if you compile the code with the
ADEPT NO AUTOMATIC DIFFERENTIATION flag set, as discussed in section 8.2.

void set values(adouble* x, size t n, const double* x val) Set the value of then adouble ob-
jects starting atx to the values inx val, without storing the equivalent differential statement inthe currently
active stack.

void set gradients(adouble* x, size t n, const double* gradients) Set the gradients corre-
sponding to then adouble objects starting atx to then doubles starting atgradients. This has the
same effect as calling theset gradient member function of eachadouble object in turn, but is more
concise.

13. Exceptions thrown by theAdept library 17

void get gradients(const adouble* y, size t n, double* gradients) Copy the gradient of then
adouble objects starting aty into the n doubles starting atgradients. This has the same effect as
calling theget gradient member function of eachadouble object in turn, but is more concise. This
function can throw agradient out of range exception if newadouble objects were created since the
first set gradients function orset gradient member function was called.

13 Exceptions thrown by theAdeptlibrary

Some functions in theAdept library can throw exceptions, and all of the exceptions thatcan be thrown
are derived fromadept::autodiff exception, which is itself derived fromstd::exception. All these
exceptions indicate an error in the users code, usually associated with callingAdept functions in the wrong order.

An exception-catching implementation that takes different actions depending on whether a specific Adept
exception, a generalAdept exception, or a non-Adept exception is thrown might have the following form:

try {
adept::Stack stack;
// ... Code using the Adept library goes here ...

}
catch (adept::stack_already_active& e) {

// Catch a specific Adept exception
std::cerr << "Error: " << e.what() << std::endl;
// ... any further actions go here ...

}
catch (adept::autodiff_exception& e) {

// Catch any Adept exception not yet caught
std::cerr << "Error: " << e.what() << std::endl;
// ... any further actions go here ...

}
catch (...) {

// Catch any exceptions not yet caught
std::cerr << "An error occurred" << std::endl;
// ... any further actions go here ...

}

All exceptions implement thewhat() member function, which returns aconst char* containing an error mes-
sage. The following exceptions can be thrown, and all are in theadept namespace:

gradient out of range This exception can be thrown by theadouble::get gradient member function if
the index to its gradient is larger than the number of gradients stored. This can happen if theadouble object
was created after the firstadouble::set gradient call since the lastStack::new recording call. The
first adouble::set gradient call signals to theAdept stack that the main algorithm has completed and
so memory can be allocated to store the gradients ready for a forward or reverse pass through the differential
statements. If furtheradouble objects are created then they may have a gradient index that is out of range
of the memory allocated.

gradients not initialized This exception can be thrown by functions that require the list of working
gradients to have been initialized (particularly the functions Stack::compute tangent linear and
Stack::compute adjoint). This initialization occurs whenadouble::set gradient is called.

stack already active This exception is thrown when an attempt is made to make a particular Stack object
“active”, but there already is an active stack in this thread. This can be thrown by theStack constructor or
theStack::activate member function.

dependents or independents not identified This exception is thrown when an attempt is made to com-
pute a Jacobian but the independents and/or dependents havenot been identified.

wrong gradient This exception is thrown by theadouble::append derivative dependence if
the adouble object that it is called from is not the same as that of the mostrecent
adouble::add derivative dependence.

14. Configuring the behaviour ofAdept 18

non finite gradient This exception is thrown if the users code is compiled with the preprocessor variable
ADEPT TRACK NON FINITE GRADIENTS defined, and a mathematical operation is carried out for which the
derivative is not finite. This is useful to locate the source of non-finite derivatives coming out of an algorithm.

feature not available This exception is thrown by deprecated functions, such asStack::start().

14 Configuring the behaviour ofAdept

The behaviour of theAdept library can be changed by defining one or more of theAdept preprocessor
variables. This can be done either by editing theadept.h file and uncommenting the relevant#define lines in
sections 1 or 2 of the file, or by compiling your code with-Dxxx compiler options (replacingxxx by the relevant
preprocessor variable. There are two types of preprocessorvariable: the first types only apply to the compilation
of user code, while the second types require theAdept library to be recompiled.

The preprocessor variables that apply only to user code and do not require theAdept library to be recompiled
are as follows:

ADEPT STACK THREAD UNSAFE If this variable is defined, the currently active stack is stored as a global variable
but is not defined to be “thread-local”. This is slightly faster, but means that you cannot use multi-threaded
code with separate threads holding their own activeStack object. Note that although defining this variable
does not require a library recompile, all source files that make up a single executable must be compiled with
this option (or all not be).

ADEPT RECORDING PAUSABLE This option enables an algorithm to be run both with and without automatic
differentiation from within the same program via the functions Stack::pause recording() and
Stack::continue recording(). Note that although defining this variable does not require alibrary
recompile, all source files that make up a single executable must be compiled with this option (or all not be).
Further details on this option are provided in section 8.1.

ADEPT NO AUTOMATIC DIFFERENTIATION This option turns off automatic differentiation by treating adouble

objects asdouble. It is useful if you want to compile one source file twice to produce versions with and
without automatic differentiation. Further details on this option are provided in section 8.2.

ADEPT TRACK NON FINITE GRADIENTS Often when an algorithm is first converted to use an operator-
overloading automatic differentiation library, the gradients come out as Not-a-Number or Infinity. The rea-
son is often that the algorithm contains operations for which the derivative is not finite (e.g.

√
a for a = 0),

or constructions where a non-finite value is produced but subsequently made finite (e.g. exp(−1.0/a) for
a = 0). Usually the algorithm can be recoded to avoid these problems, if the location of the problematic
operations can be identified. By defining this preprocessor variable, anon finite gradient exception
will be thrown if any operation results in a non-finite derivative. Running the program within a debugger
(and ensuring that the exception is not caught within the program) enables the offending line to be identified.

ADEPT INITIAL STACK LENGTH This preprocessor variable is set to an integer, and is used as the default initial
amount of memory allocated for the recording, in terms of thenumber of statements and operations.

ADEPT REMOVE NULL STATEMENTS If many variables in your code are likely to be zero then redundant operations
will be added to the list of differential statements. For example, the assignmenta = b×c with active variables
b andc both being zero results in the differential statementδa = 0× δb +0× δc. This preprocessor variable
checks for zeros and removes terms on the right-hand-side ofdifferential statements if it finds them. In this
case it would putδa = 0 on the stack instead. This option slows down the recording stage, but speeds up the
subsequent use of the recorded stack for adjoint and Jacobian calculations. The speed up of the latter is only
likely to exceed the slow down of the former if your code contains many zeros. For most codes, this option
causes a net slow down.

ADEPT COPY CONSTRUCTOR ONLY ON RETURN FROM FUNCTION If copy constructors foradouble objects are
only used in the return values for functions, then defining this preprocessor variable will lead to slightly

15. Frequently asked questions 19

faster code, because it will be assumed that when a copy constructor is called, the index to its gradient can
simply be copied because the object being copied will shortly be destructed (otherwise communication with
theStack object is required to unregister one and immediately register the other). You need to be sure that
the code being compiled with this option does not invoke the copy constructor in any other circumstances.
Specifically, it must not include either of these constructions: “adouble x = y;” or “ adouble x(y);”,
wherey is anadouble object. If it does, then strange errors will occur.

The preprocessor variables that require theAdept library to be recompiled are as follows. Note that if these
variables are used they must be the same when compiling both the library and the user code. This is safest to
implement by editing theadept.h header file.

ADEPT FLOATING POINT TYPE If you want to compileAdept to use a precision other than double, define
this preprocessor variable to be the floating-point type required, e.g. float or long double. To
use from the compiler command-line, use the argument-DADEPT FLOATING POINT TYPE=float or
-DADEPT FLOATING POINT TYPE="long double".

ADEPT STACK STORAGE STL Use the C++ standard template libraryvector or valarray classes for storing the
recording and the list of gradients, rather than dynamically allocated arrays. In practice, this tends to slow
down the code.

ADEPT MULTIPASS SIZE This is set to an integer, invariably a power of two, specifying the number of rows or
columns of a Jacobian that are calculated at once. The optimum value depends on the platform and the
capability of the compiler to optimize loops whose length isknown at compile time.

ADEPT MULTIPASS SIZE ZERO CHECK This is also set to an integer; if it is greater than
ADEPT MULTIPASS SIZE, then theStack::jacobian reverse function checks gradients are non-
zero before using them in a multiplication.

15 Frequently asked questions

Why are all the gradients coming out of the automatic differentiation zero? You have almost certainly omit-
ted or misplaced the call of theadept::Stackmember function “new recording()”. It should be placed
after the independent variables in the algorithm have been initialized, but before any subsequent calcula-
tions are performed on these variables. If it is omitted or placed before the point where the independent
variables are initialized, the differential statements corresponding to this initialization (which are all of the
form δx = 0), will be placed in the list of differential statements andwill unhelpfully set to zero all your
gradients right at the start of a forward pass (resulting from a call toforward()) or set them to zero right at
the end of a reverse pass (resulting from a call toreverse()).

Can Adept reuse a stored tape for multiple runs of the same algorithm but with different inputs? No.
Adept does not store the full algorithm in its stack (as ADOL-C does in its tapes, for example), only
the derivative information. So from the stack alone you cannot rerun the function with different inputs.
However, rerunning the algorithm including recomputing the derivative information is fast using Adept,
and is still faster than libraries that store enough information in their tapes to enable a tape to be reused
with different inputs. It should be stressed that for any algorithm that includes different paths of execution
(“if” statements) based on the values of the inputs, such a tape would need to be rerecorded anyway. This
includes any algorithm containing a look-up table.

Why does my code crash with a segmentation fault?This means it is trying to access a memory address not
belonging to your program, and the first thing to do is to run your program in a debugger to find out at what
point in your code this occurs. If it is in theadept::aReal constructor (note thataReal is synonymous
with adouble), then it is very likely that you have tried to initiate anadept::adouble object before
initiating anadept::Stack object. As described in section 5.1, there are good reasons why you need to
initialize theadept::Stack object first.

16. License 20

16 License

TheAdept library is released under the GNU General Public License (GPL) version 3, which is available
athttp://www.gnu.org/licenses/gpl.html. This license permits you to use and modify the library for any
purpose, but if you distribute a software package that incorporates the library or a modified version of it, you must
release the source code for the entire software package under the conditions of the GNU GPL.

If you would like to useAdept under other licensing terms, for example in commercial software, please
contact Robin Hogan (r.j.hogan@reading.ac.uk).

In addition to the legally binding terms of the license, it isrequested that you cite Hogan (2013) in publica-
tions describing algorithms and software that make use of the Adept library. This is not a condition of the license,
but is good honest practice in science and engineering.

References

Bell, B., 2007: CppAD: A package for C++ algorithmic differentiation.http://www.coin-or.org/CppAD

Liu, D. C., and Nocedal, J., 1989: On the limited memory method for large scale optimization.Math. Programming
B, 45,503–528.

Gay, D. M., 2005: Semiautomatic differentiation for efficient gradient computations. InAutomatic Differentiation:
Applications, Theory, and Implementations, H. M. Bücker, G. F. Corliss, P. Hovland, U. Naumann and B. Norris
(eds.), Springer, 147–158.

Griewank, A., Juedes, D., and Utke, J., 1996: Algorithm 755:ADOL-C: a package for the automatic differentiation
of algorithms written in C/C++.ACM Trans. Math. Softw., 22,131–167.

Hogan, R. J., 2013: Fast reverse-mode automatic differentiation using expression templates in C++.Submitted to
ACM Trans. Math. Softw.

