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1 Introduction

Adept (Automatic Differentiation using Expression Templatesjisoftware library that enables algorithms
written in C and C++ to be automatically differentiated. $ieg an operator overloading approach, so very little
code modification is required. Differentiation can be perfed in forward mode (the “tangent-linear” compu-
tation), reverse mode (the “adjoint” computation), or th# Jacobian matrix can be computed. This behaviour
is common to several other libraries, namely ADOL-C (Grielvat al., 1996), CppAD (Bell, 2007) and Sacado
(Gay, 2005), but the use of expression templates, an effigiay to store the differential information and several
other optimizations mean that reverse-mode differentiatends to be significantly faster and use less memory.
In fact, Adept is also usually only a little slower than an adjoint code ydghmwrite by hand, but immeasurably
faster in terms of user time; adjoint coding is very time aomig and error-prone. For technical details of how it
works and benchmark results, see Hogan (2013).

This user guide describes how to apply tkdept software library to your code, and many of the examples
map on to those in thieest directory of theAdept software package. Section 2 describes the functionaktyttie
library provides. Section 3 outlines how to install it on yeystem and how to compile your own code to use it.
Section 4 describes how to prepare your code for automdtareintiation, and section 5 describes how to perform
forward- and reverse-mode automatic differentiation as tlode. Section 6 describes how to compute Jacobian

*Corresponding author: Robin J. Hogan, Department of Metegy, University of Reading. Emait:. j . hogan@ eadi ng. ac. uk
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matrices. Section 7 provides a detailed description of lmoiwterface an algorithm implemented usitdept with

a third-party minimization library. Section 8 describeswhim call a function both with and without automatic
differentiation from within the same program. Section 9alies how to interface to software modules that
compute their own Jacobians. Section 10 provides somedifggetting the best performance frakdept. Section

11 describes the user-oriented member functions o$tlaek class that contains the differential information and
section 12 describes the member functions of the “activeibteprecision typadoubl e. Section 13 describes
the exceptions that can be thrown by soAaept functions. Section 14 describes how to configure the bebavio
of Adept by defining certain preprocessor variables. Finally, sectié describes the license terms.

2 What functionality does Adeptprovide?
Adept provides the following functionality:

Full Jacobian matrix Given the non-linear functiop = f(x) relating vectoly to vectorx coded in C or C++,
after a little code modificatioddept can compute the Jacobian matkk = dy/x, where the element at
rowi and columnj of His H; ; = dy;/dx;. This matrix will be computed much more rapidly and accuyate
than if you simply recompute the function multiple timescleéime perturbing a different element nfby
a small amount. The Jacobian matrix is used in the Gausséveavtd Levenberg-Marquardt minimization
algorithms.

Reverse-mode differentiation This is a key component in optimization problems where a livgar function
needs to be minimized but the state vectds too large for it to make sense to compute the full Jacobian
matrix. Atmospheric data assimilation is the canonicahepd® in the field of meteorology. Given a nonlin-
ear functionJ(x) relating the scalar to be minimizddo vectorx, Adept will compute the vector of adjoints
0J/0x. Moreover, for a component of the code that may be expressednaulti-dimensional non-linear
functiony = f(x), Adept can comput@J/ox if it is provided with the vector of input adjoin@J/dy. In
this casedJ/dx is equal to the matrix-vector produit’0J/dy, but it is computed here without computing
the full Jacobian matriH. The vectordJ/dx may then be used in a quasi-Newton minimization scheme
(e.g., Liu and Nocedal, 1989).

Forward-mode differentiation Given the non-linear functiop = f(x) and a vector of perturbatiods, Adept
will compute the corresponding vectdy arising from a linearization of the functioh Formally,dy is
equal to the matrix-vector produEldx, but it is computed here without computing the full Jacobvaatrix
H. Note thatAdept is designed for the reverse case, so might not be as fast npedcal in memory in
the forward mode as libraries written especially for thatgmse (although Hogan, 2013, showed that it was
competitive).

Adept can currently automatically differentiate the standardheamatical operators, - , * and/ , as well as their
assignment versions, - =, *= and/ =. It supports the mathematical functiosxg t , exp, | og, | 0910, si n, cos,
tan, asi n, acos, at an, si nh, cosh, t anh, abs andpow. The “active” variables can take part in comparison
operations==, ! =, >, <, >= and<=, as well as the diagnostic functionsfi ni t e, i si nf andi snan.

Note that at presemtdept is missing some functionality that you may require:

o Differentiation is first-order only: it cannot directly cqgmte higher-order derivatives such as the Hessian
matrix.

¢ It has limited support for complex numbers; no support fothmamatical functions of complex numbers, and
expressions involving operations (addition, subtractioaltiplication and division) on complex numbers are
not optimized.

e All code to be differentiated in a single program must useshee precision. By default this is double
precision, although the library may be recompiled to usglsiprecision or quadruple precision (the latter
only if supported by your compiler).

e Your code should operate on variables individually: they ba stored in C-style arrays etd: : vect or
types, but if you use containers that allow operations oinesatrays, such as tls d: : val ar r ay type, then
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some array-wise functionality (such as mathematical fonstapplied to the whole array and multiplying
an array of active variables by an ordinary non-active staldl not work.

e It can be applied to C and C++ onbpdept could not be written in Fortran since the language provides n
template capability.

It is hoped that future versions will remedy these limitaidand it is hoped that a future version of Fortran will
support templates).

3 Installing Adeptand compiling your own code to use it

The code has been tested on Linux with the GNU C++ compilarshauld compile on any Unix-like
system with a C++98 compliant compiler. On a Unix-like systelo the following:

1. Unpack the package 4r xvfz adept-1.x.tar.gz on Linux) andcd to the directoryadept - 1. x
(wherex is the number of the most recent subversion).

2. Compile the code by typingake. You may need to configure a few things first, such as the camiy
editing themakef i | e_i ncl ude file first. See also section 14 for ways to configure the behadbAdept.

3. This will create the static libranyi b/ | i badept . a. To copy this and the include filencl ude/ adept . h
into/ usr/ 1 ocal , usesu to log-in as the superuser and typeke i nst al | . To first specify another install
directory, edit thePREFI X variable invakefi | e.

To compile source files that use tlelept library, you need to make sure thadept . h is in your in-
clude path. If this file is located in a directory that is notthre default include path, add something like
-1/ home/ fred/ i ncl ude to the compiler command line. At the linking stage, adcdept to the command
line to tell the linker to look for thé i badept . a static library. If this file is in a non-standard locationsaladd
something like L/ hone/ fred/ | i b before the | adept argument to specify its location. Section 8.2 provdes an
example Makefile for compiling code that uses #dept library.

4 Code preparation

If you have used ADOL-C, CppAD or Sacado then you will alredgtyfamiliar with what is involved
in applying an operator-overloading automatic differatitin package to your code. The user interfacAdept
differs from these only in the detail. It is assumed that yauehan algorithm written in C or C++ that you wish
to differentiate. This section deals with the modificatioegded to your code, while section 5 describes the small
additional amount of code you need to write to differentiaite
In all source files containing code to be differentiated, yeed to include thadept . h header file and
import theadoubl e type from theadept namespace. Assuming your code uses double precision, gnséarch
and replaceloubl e with the “active” equivalentdoubl e, but doing this only for those variables whose values
depend on the independent input variables. If you wish toaudéferent precision, or to enable your code to
be easily recompiled to use different precisions, then yay aiternatively use the geneeal type from the
adept namespace with its active equivaleReal . Section 14 describes how to configure these types to ragrese
single, double or quadruple precision, but be aware thatraatation of round-off error can make the accuracy of
derivatives computed using single precision insufficiemtrhinimization algorithms. For now we consider only
double precision.
Consider the following contrived algorithm from Hogan (3)1hat takes two inputs and returns one output:
doubl e al gorithm(const double x[2]) {
double y = 4.0;
double s = 2.0xx[0] + 3.0%x[1]*x[1];
y *= sin(s);
return vy,

}

The modified code would look like this:
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#i ncl ude "adept.h"
usi ng adept:: adoubl e;

adoubl e al gorithm(const adouble x[2]) {
adouble y = 4.0;
adouble s = 2.0+x[ 0] + 3.0xx[1]*x[1];
y *= sin(s);
return y;

}

Changes like this need to be done in all source files that f@rngd an algorithm to be differentiated.

If you need to access the real number underlyingdwoubl e variablea, for example in order to use it as
an argumentto thepri nt f function, then usa. val ue() oradept : : val ue( a) . Any mathematical operations
performed on this real number will not be differentiated.

You may useadoubl e as the template argument of a Standard Template Library X8&ttor type (i.e.
st d: : vect or <adoubl e>), or indeed any container where you access individual edsrane by one. For types
allowing mathematical operations on the whole object, ascthe STLconpl ex andval ar r ay types, you will
find that although you can multiply orse d: : conpl ex<adoubl e> or st d: : val ar r ay <adoubl e> object by
another, mathematical functionsx@, si n etc.) will not work when applied to whole objects, and naitivdl
some simple operations such as multiplying these types lordinary (non-activedioubl e variable. Moreover,
the performance is not great because expressions canndhybedtimized when in these containers. Itis expected
that a future version ofdept will include its own complex and vector types that overcohwse limitations.

5 Applying reverse-mode differentiation

Suppose you wanted to create a versioalafor i t hmthat returned not only the result but also the gradient
of the result with respect to its inputs, you would do this:
#i ncl ude "adept.h"

doubl e al gorithm and_gradi ent (
const double x_val[2], // Input val ues

doubl e dy_dx[2]) { // Qutput gradients
adept: : St ack stack, /'l Where the derivative information is stored
usi ng adept: : adoubl e; /1 1nmport adoubl e from adept
adoubl e x[2] = {x_val[0], x_ val[1]}; [/ Initialize active input variables
st ack. new_recording(); // Start recording
adoubl e y = al gorithn(x); /1 Call version overl oaded for adoubl e args
y.set_gradi ent(1.0); /'l Defines y as the objective function
st ack. conput e_adj oi nt () ; // Run the adjoint algorithm
dy_dx[0] = x[0].get_gradient(); /] Store the first gradient
dy dx[1] = x[1].get _gradient(); /Il Store the second gradient
return y.val ue(); /! Return the result of the sinple conmputation

}

The component parts of this function are in a specific ordet,ifthis order is violated then the code will not run
correctly.

5.1 Set-up stack to record derivative information

adept: : St ack stack;

ThesSt ack object is where the differential version of the algorithnfl e stored. When initialized, it makes itself
accessible to subsequent statements via a global varlaltleising thread-local storage to ensure thread safety.
It must be initialized before the firstdoubl e object is instantiated, because such an instantiatiostergithe
adoubl e object with the currently active stack. Otherwise the codeonash with a segmentation fault.

In the example here, th&t ack object is local to the scope of the function. If anotlseack object had
been initialized by the calling function and so was activehatpoint of entry to the function, then the lo&alack
object would throw amdept : : st ack_al r eady_act i ve exception (see Test 3 described ast / README in the
Adept package if you want to use multip& ack objects in the same program). A disadvantage of IScakk
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objects is that the memory it uses must be reallocated emehttie function is called. This can be overcome in
several ways:
e Declare thest ack object to best at i ¢, which means that it will persist between function calls.isThas
the disadvantage that you won't be able to use oshack objects in the program without deactivating this
one first (see Test 3 in thidept package, referred to above, for how to do this).

e Initialize Stack in the main body of the program and pass a reference to it to the
al gori t hmand_gr adi ent function, so that it does not go out of scope between calls.

e Putitin a class so that it is accessible to member functitwisapproach is demonstrated in section 7.

5.2 Initialize independent variables and start recording

adoubl e x[2] = {x_val[0], x_val[1]};
stack. new_recording();

The first line here simply copies the input values to the allgor into adoubl e variables. These are thede-
pendent variables, but note that there is no obligation for these to be storezhasarray (as in CppAD), and for
forward- and reverse-mode automatic differentiation youndt need to telAdept explicitly via a function call
which variables are the independent ones. The next lineschdbdifferential statements from the stack so that it
is ready for a new recording of differential information.

Note that the first line here actually stores two differdrdtatementsdx[ 0] =0 anddx[ 1] =0, which are
immediately cleared by theew.r ecor di ng function call. To avoid the small overhead of storing redamtd
information on the stack, we could replace the first line with

x[ 0] . set _val ue(x_val [0]);
x[ 1] . set _val ue(x_val [1]);

or

adept : : set _val ues(x, 2, x_val);

which have the effect of setting the valuesxalithout storing the equivalent differential statements.

Users ofAdept version 0.9 should note that thew.r ecor di ng function replaces thet art function
call, which had to be pubefore the independent variables were initialized. The probleth wiis was that the
independent variables had to be initialized with $fe¢ _val ue orset _val ues functions, otherwise the gradients
coming out of the automatic differentiation would all be@eBince it was easy to forget thisgw.r ecor di ng was
introduced to allow the independent variables to be asdignthe normal way using the assignment operatdr (
But don't just replacest art in your version-0.9-compatible code witlew.r ecor di ng; the latter must appear
after the independent variables have been initialized.

5.3 Perform calculations to be differentiated
adoubl e y = al gorithn(x);

The algorithm is called, and behind the scenes the equivditferential statement for every mathematical state-
ment is stored in the stack. The result of the forward catmnras stored iny, known as a dependent variable.
This example has one dependent variable, but any numbédovgeal, and they could be returned in another way,
e.g. by passing a non-constant array to algorithm that églfiNith the final values when the function returns.

5.4 Perform reverse-mode differentiation

y.set_gradient(1.0);
st ack. conput e_adj oi nt () ;

The first line sets the initial gradient (or adjoint) pf In this example, we want the output gradients to be the
derivatives ofy with respect to each of the independent variables; to aehfes, the initial gradient of must be
unity.
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More generally, ify was only an intermediate value in the computation of objedtinctionJ, then for the
outputs of the function to be the derivativeslofith respect to each of the independent variables, we woetd n
to set the gradient of to dJ/dy. In the case of multiple intermediate values, a separatéacaét _gr adi ent is
needed for each intermediate valuey Mvas an array of length then the gradient of each element could be set to
the values in aloubl e arrayy_ad using

adept::set_gradients(y, n, y_ad);

The conput e_adj oi nt () member function of stack performs the adjoint calculatisweeping in re-
verse through the differential statements stored on theksta\ote that this must be preceded by at least
one set _gradi ent or set _gradients call, since the first such call initializes the list of grauie for
conput e_adj oi nt () to act on. Otherwisegonput e_adj oi nt () will throw agradi ents_not_initialized
exception.

5.5 Extract the final gradients

dy_dx[0] = x[0].get_gradient();
dy dx[1] = x[1].get _gradient();

These lines simply extract the gradients of the objectiveefion with respect to the two independent variables.
Alternatively we could have extracted them simultaneousing
adept::get_gradi ents(x, 2, dy_dx);
To do forward-mode differentiation in this example wouldatve setting the initial gradients afinstead

ofy, calling the member functiotonput e_t angent _| i near () instead otonput e_adj oi nt (), and extracting
the final gradients from instead ofk.

6 Computing Jacobian matrices
Until now we have considered a function with two inputs ané ontput. Consider the following more
general function whose declaration is
voi d al gorithnmR2(int n, const adoublex x, int m adoublex y);
wherex points to then independent (input) variables agdpoints to them dependent (output) variables. The
following function would return the full Jacobian matrix:

#i ncl ude <vect or>
#i ncl ude "adept.h"
voi d al gorithnR_j acobi an(

int n, /1 Nunber of input val ues
const doubl ex x_val, /1 1nput val ues
int m /1 Nunber of output val ues
doubl ex y_val, /] Qutput val ues
doubl ex jac) { /] Qutput Jacobian matrix
usi ng adept:: adoubl e; // lnmport Stack and adoubl e from adept
adept: : St ack stack; /1 Where the derivative information is stored
std: : vect or<adoubl e> x(n); /'l Vector of active input variables
adept::set_val ues(&[0], n, x_val); // Initialize adouble inputs
adept . new_r ecordi ng(); /] Start recording
std:: vector<adoubl e> y(m; /'l Create vector of active output variables
al gorithn2(n, &[0], m &[0]); // Run al gorithm
st ack. i ndependent (&[ 0], n); /1 ldentify independent variabl es
st ack. dependent (&[0], m; /] ldentify dependent variables
st ack. j acobi an(j ac) ; // Conmpute & store Jacobian in jac
}
Note that:

e Thei ndependent member function of stack is used to identify the independariables, i.e. the variables
that the derivatives in the Jacobian matrix will be with mspto. In this example there aneéndependent
variables located together in memory and so can be identfieat once. Multiple calls are possible to
identify further independent variables. To identify a $sngndependent variable, calhdependent with
just one argument, the independent variable (not as a phinte
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e Thedependent member function of stack identifies the dependent varialaled its usage is identical to
i ndependent .

e The memory provided to store the Jacobian matrix (pointdal/foac) must be a one-dimensional array of
sizemxn, wheremis the number of dependent variables and the number of independent variables.

e The resulting matrix is stored in the sense of the index preng the dependent variables varying fastest
(column-major order). To get row-major order, call trezobi an function with a second argumenttofue
(see section 11).

¢ Internally, the Jacobian calculation is performed by npldtforward or reverse passes, whichever would be
faster (dependent on the numbers of independent and depteradimbles).

e The use okt d: : vect or <adoubl e> rather thamew adoubl e[ n] ensures no memory leaks in the case
of an exception being thrown, since the memory associatédxandy will be automatically deallocated
when they go out of scope.

7 Real-world usage: interfacingAdeptto a minimization library

Suppose we want to find the vectothat minimizes a cost functial(x) that consists of a large algorithm
coded using thédept library and encapsulated within a C++ class. In this sectienillustrate how it may be
interfaced to a third-party minimization algorithm with astyle interface, specifically the free one in the GNU
Scientific Library. The full working version of this examplesing the N-dimensional Rosenbrock banana function
as the function to be minimized, is “Test 4” in thest directory of theAdept software package. The interface to
the algorithm is as follows:

#i ncl ude <vector>

#i ncl ude "adept.h"

usi ng adept: : adoubl e;

class State {

publi c:
/] Construct a state with n state vari abl es
State(int n) { active_x_.resize(n); x_.resize(n); }
// Mninmze the function, returning true if mnimzation successful, false otherw se
bool m nim ze();
/| Get copy of state variables after mnimzation
voi d x(std::vector<doubl e>& x_out) const;
// For input state variables x, conpute the function J(x) and return it
doubl e cal c_function_val ue(const doubl ex x);
/] For input state variables x, conpute function and put its gradient in dJ_dx
doubl e cal c_function_val ue_and_gradi ent(const doubl ex x, doubl ex dJ_dx);
// Return the size of the state vector
unsi gned int nx() const { return active_x_.size(); }
pr ot ect ed:

/] Active version: the algorithmis contained in the definition of this function
adoubl e cal c_function_val ue(const adoubl ex Xx);

/| DATA
adept:: Stack stack_; /'l Adept stack object
std::vector<adoubl e> active_x_; // Active state variables

}s

The algorithm itself is contained in the definition ol c¢_f uncti on_val ue(const adoubl e*), which is im-
plemented usingdoubl e variables (following the rules in section 4). However, thiblic interface to the class
uses only standardoubl e types, so the use &idept is hidden to users of the class. Of course, a complicated
algorithm may be implemented in terms of multiple classasdlo exchange data véaoubl e objects. We will be
using a quasi-Newton minimization algorithm that callsalgorithm many times with trial vectoss and for each
call may request not only the value of the function, but alsgradient with respect to. Thus the public interface
providescal c_f uncti on_val ue(const doubl ex) andcal c_functi on_val ue_and_gr adi ent, which could

be implemented as follows:



7. Real-world usage: interfacirfgdeptto a minimization library 8

doubl e State::cal c_function_val ue(const doublex x) {
for (unsigned int i =0; i < nx(); ++i) active x [i] = x[i];
stack_. new recording();
return val ue(cal c_function_val ue(&active_x_[0]));

}

doubl e State::calc_function_val ue_and_gradi ent(const doubl ex x, doublex dJ_dx) {
for (unsigned int i =0; i < nx(); ++i) active x [i] = x[i];
stack_. new_recording();
adoubl e J = cal c_function_val ue(&active x _[0]);
J.set _gradient(1.0);
stack_. conput e_adj oi nt();
adept::get_gradi ents(&ctive_x [0], nx(), dJ_dx);
return val ue(J);

}

The first function simply copies theloubl e inputs into anadoubl e vector and runs the version of
cal c_function_val ue for adoubl e arguments. Obviously there is an inefficiency here in thatdigmts are
recorded that are then not used, and this function would piedlly 2.5-3 times slower than an implementation
of the algorithm that did not store gradients. Section 8 dless two ways to overcome this problem. The second
function above implements reverse-mode automatic diftéa#on as described in section 5.

Theni ni m ze member function could be implemented using GSL as follows:

#i ncl ude <i ostrean»
#i ncl ude <gsl/gsl _multim n. h>

bool State::mnimze() {
/1l Mnimzer settings
const double initial _step_size = 0.01;
const double |ine_search_tol erance = 1. Oe-4;
const doubl e converged_gradi ent_norm = 1. Oe- 3;
/1 Use the "limted-nmenory BFGS' quasi-Newton m nimzer
const gsl_multimn_fdfmnimzer_typex mnimzer_type
= gsl _multimn_fdfmnimzer_vector_bfgs2;

/| Decl are and popul ate structure containing function pointers
gsl _multimn_function_fdf ny_function;

my_function.n = nx();

nmy_function.f = ny_function_val ue;

nmy_function.df = nmy_function_gradient;

my_function. fdf = my_function_val ue_and_gradi ent;

nmy_function. parans = reinterpret_cast<voi d*>(this);

/] Set initial state variables using GSL's vector type

gsl _vector xx;

x = gsl _vector_alloc(nx());

for (unsigned int i =0; i < nx(); ++i) gsl_vector_set(x, i, 1.0);

/1 Configure the m nimzer
gsl _multimn_fdfmnimzerx nmnimzer
= gsl _multimn_fdfmnimnmzer_alloc(m nimzer_type, nx());
gsl _multimn_fdfmnimzer_set(m nimzer, &nmy_function, x,
initial _step_size, |line_search_tolerance);
/1 Begin | oop
size t iter = 0;
int status;
do {
++iter;
/1 Performone iteration
status = gsl _mul tim n_fdfmnimzer_iterate(m ninizer);

// Quit loop if iteration failed
if (status != GSL_SUCCESS) break;

/| Test for convergence
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status = gsl _mul tim n_test_gradi ent(m nim zer->gradi ent, converged_gradi ent_norn;
}
while (status == GSL_CONTI NUE && iter < 100);

/'l Free nenory
gsl _multimn_fdfmnimzer_free(m nim zer);
gsl _vector_free(x);

/! Return true if successfully minimzed function, false otherw se
if (status == GSL_SUCCESS) {

std::cout << "M ninmum found after " << iter << " iterations\n";
return true;

}

el se {
std::cout << "M nimzer failed after " << iter << " iterations:

<< gsl _strerror(status) << "\n";
return fal se;

}
}

The GSL interface requires three functions to be definedh edevhich takes a vector of state variabless
input: my_f unct i on_val ue, which returns the value of the functiomy_f unct i on_gr adi ent , which returns the
gradient of the function with respect g andmy _f unct i on_val ue_and_gr adi ent , which returns the value and
the gradient of the function. These functions are provide@$L as function pointers (see above), but since GSL
is a C library, we need to use thext ern " C'’ specifier in their definition. Thus the function definitionsuld

be:

extern "C'

doubl e my_function_val ue(const gsl_vector* x, void+* parans) {
Statex state = reinterpret_cast<Statex>(parans);
return state->cal c_function_val ue(x->data);

}

extern "C'

voi d nmy_function_gradi ent(const gsl_vector* x, void+x parans, gsl_vector* gradJd) {
Statex state = reinterpret_cast<Statex>(parans);
stat e->cal c_function_val ue_and_gradi ent(x->data, gradJ->data);

}

extern "C'
voi d nmy_function_val ue_and_gradi ent(const gsl _vector* x, voi d+x parans,
doubl ex J, gsl _vector* gradJd) {
Statex state = reinterpret_cast<Statex>(parans);
*J = state->cal c_function_val ue_and_gradi ent(x->data, gradJ->data);

}

When thegs! _nul ti mi n_f df mi ni mi zer _i t er at e function is called, it chooses a search direction and perfor
several calls of these functions to approximately mininttze function along this search direction. Thiei s
pointer (i.e. the pointer to thét at e object), which was provided to the/_f unct i on structure in the definition
of theni ni m ze function above, is provided as the second argument to eatie dfiree functions above. Unlike
in C, in C++ this pointer needs to be cast back to a pointerSicaa e type, hence the use oti nt er pret cast .

That's it! A call tomi ni mi ze should successfully minimize well behaved differentiabldti-dimensional
functions. It should be straightforward to adapt the abowedrk with other minimization libraries.

8 Calling an algorithm with and without automatic different iation from the same pro-
gram

Thecal c_function_val ue(const doubl ex) member function defined in section 7 is sub-optimal in
that it simply calls theal c_f uncti on_val ue(const adoubl ex) member function, which not only computes
the value of the function, it also records the derivativeiniation of all the operations involved. This information
is then ignored. This overhead makes the function typicalf~3 times slower than it needs to be, although
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sometimes (specifically for loops containing no trancetaldanctions) the difference between an algorithm coded
in terms ofdoubl es and the same algorithm coded in termaddubl es can exceed a factor of 10 (Hogan, 2013).
The impact on the computational speed of the entire minitimzgrocess depends on how many requests are made
for the function value only as opposed to the gradient of theefion, and can be significant. We require a way
to avoid the overhead @fdept computing the derivative information for calls ¢al c_f uncti on_val ue(const

doubl ex) , without having to maintain two versions of the algorithmeaoded in terms afoubl es and the other

in terms ofadoubl es. The two ways to achieve this are now described.

8.1 Pausable recording

The first method involves compiling the entire code with ADEPT_RECORDI NG PAUSABLE preprocessor
variable defined, which can be done by adding an argumBADEPT_RECORDI NG PAUSABLE to the compler
command line. This modifies the behaviour of mathematicafaigons performed oadoubl e variables: instead
of performing the operation and then storing the derivaitifermation, it performs the operation and then only
stores the derivative information if thdept stack is not in the “paused” state. We then use the followiegiimer
function definition instead of the one in section 7:

doubl e State::cal c_function_val ue(const doubl ex x) {
stack_. pause_recordi ng();
for (unsigned int i =0; i < nx(); ++i) active x [i] = x[i];
doubl e J = val ue(cal c_function_val ue(&ctive_x_[0]));
stack_. continue_recording();
return J;

}

By pausing the recording for all operationsadoubl e objects, most of the overhead of storing derivative infor-
mation is removed. The extra run-time check to see whetlesttck is in the paused state, which is carried out
by mathematical operations involvirgloubl e objects, generally adds a small overhead. However, in ifoos
where most of the number crunching occurs in loops contginmtrancendental functions, even if the stack is in
the paused state, the presence of the check can preventtipdeofrom agressively optimizing the loop. In that
instance the second method may be preferable.

8.2 Multiple object files per source file

The second method involves compiling each source file coinigifunctions with adoubl e argu-
ments twice. The first time, the code is compiled normally todpce an object file containing com-
piled functions including automatic differentiation. Thsecond time, the code is compiled with the
- DADEPT_NO.AUTOVATI C_DI FFERENTI ATl ON flag on the compiler command line. This instructs #uept . h
header file to turn off automatic differentiation by definithg adoubl e type to be an alias of théoubl e type.
This way, a second set of object files are created containiagaaded versions of the same functions as the first
set but this time without automatic differentiation. Thedxgect files can be compiled together to form one ex-
ecutable. In the example presented in section 7¢the _f unct i on_val ue function would be one that would
be compiled twice in this way, once to provide thed c_f uncti on_val ue( const adoubl ex) version and the
other to provide theal c_f uncti on_val ue(const doubl ex) version. Note that any functions that do not in-
cludeadoubl e arguments must be compiled only once, because otherwisiakikewill complain about multiple
versions of the same function.

The following shows a Makefile from a hypothetical projectatthcompiles two source files
(al gorithntl. cpp andal gori t hn2. cpp) twice and a thirdfai n. cpp) once:

# Specify conpiler and fl ags

CPP = g++

CPPFLAGS = -Wall -@8 -g

# Normal object files to be created

OBJECTS = al gorithml.o al gorithn2.0 nain.o

# Object files created with no automatic differentiation

NO_AD OBJECTS = al gorithml_noad. o al gorithn2_noad. o
# Program name
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PROGRAM = ny_program

# Include-file | ocation

I NCLUDES = -I/usr/local/include

# Library |l ocation and nane, plus the nmath library
LIBS = -L/usr/local/lib -1 m-I| adept

# Rule to build the program (typi ng "make" will use this rule)
$( PROGRAM) : $( OBJECTS) $(NO_AD_OBJECTS)
$(CPP) $(CPPFLAGS) $( OBJECTS) $(NO_AD OBJECTS) $(LIBS) -0 $( PROGRAM)
# Rule to build a normal object file (used to conpile all objects in OBIECTS)
% o: % cpp
$(CPP) $(CPPFLAGS) $(!NCLUDES) -c $<
# Rule to build a no-automatic-differentiation object (used to conpile ones in NO AD OBJECTS)
% noad. o: % cpp
$(CPP) $(CPPFLAGS) $(|NCLUDES) - DADEPT_NO AUTOVATI C DI FFERENTI ATION -¢ $< -0 $@

There is a further modification required with this approaabhich arises because if a header
file declares both thedouble and adouble versions of a function, then when compiled with
- DADEPT_NO_AUTQVATI C_DI FFERENTI ATl ONit appears to the compiler that the same function is declavi,
leading to a compile-time error. This can be overcome byguie preprocessor to hide thdoubl e version if
the code is compiled with this flag, as follows (using the epEnfrom section 7):

#i ncl ude "adept. h"

class State {
publi c:

doubl e cal c_function_val ue(const doubl ex x);
pr ot ect ed:
#i f ndef ADEPT_NO_AUTOVATI C_DI FFERENTI ATI ON
adoubl e cal c_function_val ue(const adoubl ex x);
#endi f

}

A final nuance is that if the code contains agfoubl e objectx, thenx. val ue() will work fine in the
compilation wherx is indeed of typeadoubl e, but in the compilation when it is set to a simpleubl e variable,
theval ue() member function will not be found. Hence it is better to agept : : val ue(x), which returns a
doubl e regardless of the type of, and works regardless of whether the code was compiled withitbout the
- DADEPT_NO_AUTOVATI C.DI FFERENTI ATl ONflag.

9 Interfacing with software containing hand-coded Jacobias

Often a complicated algorithm will include multiple compants. Components of the code written in C or
C++ for which the source is available are straightforwarckovert to usinghdept, following the rules in section 4.
For components written in Fortran, this is not possiblejfmitich components have their own hand-coded Jacobian
then it is possible to interfad&dept to them. More generally, in certain situations automafii@dentiation is much
slower than hand-coding (see the Lax-Wendroff example igafhg2013) and we may wish to hand-code certain
critical parts. In general the Jacobian matrix is quite exgde to compute, so this interfacing strategy makes most
sense if the component of the algorithm has a small numbepofts or a small number of outputs. A full working
version of the following example is given as “Test 3” in thest directory of theAdept package.

Consider the example of a radiative transfer model for shtind) satellite microwave radiances at two
wavelengths] andJ, which takes as input the surface temperaftir&nd the vertical profile of atmospheric
temperaturel from a numerical weather forecast model. Such a model woealdded in a data assimilation
system to assimilate the temperature information from #tellie observations into the weather forecast model.
In addition to returning the radiances, the model returegladiendl /0Ts and the gradientd! /dT; for all height
layersi between 1 and, and likewise for radianc& The interface to the radiative transfer model is the folfayy

void sinmul ate_radi ances(int n, // Size of tenperature array

/1 1 nput variabl es:
doubl e surface_tenperature,
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const doubl ex tenperature,

/] Qutput variabl es:

doubl e radi ance[ 2],

/] Qutput Jacobi ans:

doubl e dradi ance_dsurface_t enperature[ 2],
doubl ex dradi ance_dt enper at ure);

The calling function needs to allocazen elements for the temperature Jacohiaadi ance_dt enper at ur e to
be stored, and the stored Jacobian will be oriented suchhbadiance index varies fastest.

Adept needs to be told how to relate the radiance perturbatbremddJ, to perturbations in the input
variablespTs anddT; (for all layersi). Mathematically, we wish the following relationship to $t®red within the
Adept stack:

Sl = a—I6T + zn: a—'eST- (1)
T AT, 0T, "

This is achieved with the following wrapper function, whichsadoubl e inputs and outputs and therefore can be
called from within other parts of the algorithm that are abdeterms ofadoubl e objects:

voi d sinmul ate_radi ances_wr apper(int n,

const adoubl e& surface_t enperature,
const adoubl ex tenperature,
adoubl e radi ance[2]) {

/'l Create inactive (double) versions of the active (adouble) inputs

doubl e st = val ue(surface_tenperature);

std:: vector<doubl e> t(n);

for (int i =0; i <n; ++i) t[i] = value(tenperature[i]);

/| Declare variables to hold the inactive outputs and their Jacobi ans
doubl e r[2];

doubl e dr_dst[2];

std: : vect or<doubl e> dr_dt (2+n);

/1 Call the non-Adept function
si mul at e_radi ances(n, st, &[O0], & [O0], dr_dst, &dr_dt[0]);

/! Copy the results into the active variables, but use set_value in order
/1 not to wite any equivalent differential statement to the Adept stack
radi ance[ 0] . set _val ue(r[0]);
radi ance[ 1] . set _val ue(r[1]);

/! Loop over the two radiances and add the differential statenents to the Adept stack

for (int i =0; i < 2; ++i) {
// Add the first termon the right-hand-side of Equation 1 in the text
radi ance[i].add_derivative_dependence(surface_tenperature, dr_dst[i]);

/1 Now append the second termon the right-hand-side of Equation 1. The third argument
/1 "n" of the follow ng function says that there are n terns to be sumnmed, and the fourth
/] argunent "2" says to take only every second el enent of the Jacobian dr_dt, since the
/] derivatives with respect to the two radi ances have been interlaced. |If the fourth
[/l argunent is omitted then rel evant Jacobi an el enents will be assunmed to be conti guous
/1 in menory.
radi ance[i].append_derivative_dependence(tenperature, &Ir_dt[i], n, 2);
}
}

In this example, the form afdd_der i vat i ve_dependence for one variable on the right-hand-side of the deriva-
tive expression has been used, and the formppfend_deri vat i ve_dependence for an array of variables on
the right-hand-side has been used. As described in se@idmoth functions have forms that take single variables
and arrays as arguments. Note also that the usedf: vect or <doubl e> rather thamew doubl e[ n] ensures
that if si mul at e_r adi ances throws an exception, the memory allocated to hlddt will be freed correctly.



10. Tips for the best performance 13

10

11

Tips for the best performance

If you are working with single-threaded code, or in a muftisaded program but with only one
thread using a Stack object, then you can get slightly fasbele by compiling all of your code with
- DADEPT_STACK_THREAD_UNSAFE. This uses a standard (i.e. non-thread-local) global blito point to
the currently active stack object, which is slightly fadteaccess.

If you compile with the g option to store debugging symbols, your object files and @adate will be much
larger because every mathematical statement in the filehawlé the name of its associated templated type
stored in the file, and these names can be long. Once you hbuggkd your code, you may wish to omit
debugging symbols from production versions of the exedetdihere appears to be no performance penalty
associated with the debugging symbols, at least with the @Mt compiler.

A high compiler optimization setting is recommended torialthe function calls associated with mathemat-
ical expressions. On the GNU C++ compiler, th@8 setting is recommended.

By default the Jacobian functions are compiled to process@maf rows or columns of the Jacobian ma-
trix at once. The optimum width of the strip depends on yowtfpkm, and you may wish to change
it. To make the Jacobian functions proc@ssws or columns at once, recompile tAdept library with

- DADEPT_MULTI PASS_SI ZE=n.

If you suspect memory usage is a problem, you may investigatmemory used b&dept by simply sending
your St ack object to a stream, e.gst'd: : cout << stack”. You may also use theenory() member
function, which returns the total number of bytes used. Harrtletails of similar functions is given in section
11.

Member functions of theSt ack class

This section describes the user-oriented member functbtise St ack class. Some functions have ar-

guments with default values; if these arguments are omitted the default values will be used (for example, if
only one argument is supplied to thacobi an function below, then it will be executed as if called with ased
argument al se). Some of these functions throfdept exceptions, defined in section 13.

St ack(bool activate.imredi ately = true) The constructor for thst ack class. Normallyst ack ob-

voi d

bool

bool

jects are constructed with no arguments, which means taaitject will attempt to make itself the currently
active stack by placing a pointer to itself into a global aate. If anothest ack object is currently active,
then the present one will be fully constructed, left in thactivated state, and an ack_al r eady_acti ve
exception will be thrown. If &t ack object is constructed with an argumenftf se”, it will be started in
an unactivated state, and a subsequent call to its membetidoact i vat e will be needed to use it.

new.r ecor di ng() Clears all the information on the stack in order that a nevondiog can be started.
Specifically this function clears all the differential statents, the list of independent and dependent variables
(used in computing Jacobian matrices) and the list of grasliesed by theonput e_t angent | i near and
conput e_adj oi nt functions. Note that this function leaves the memory alleddo reduce the overhead
of reallocation in the new recordings.

pause_recordi ng() Stops recording differential information every time asloubl e statement is ex-
ecuted. This is useful if within a single program an algoritiheeds to be run both with and with-
out automatic differentiation. This option is only effeeti within compilation units compiled with
ADEPT_RECORDI NG PAUSABLE defined; if it is, the function returntsr ue, otherwise it returngal se. Fur-
ther information on using this and the following functiom grovided in section 8.1.

conti nue_recordi ng() Instruct a stack that may have previously been put in a pasisgd to now

continue recording differential information as normalisioption is only effective within compilation units
compiled withADEPT_RECORDI NG PAUSABLE defined; if it is, the function returrnts ue, otherwise it returns
fal se.
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bool

voi d

voi d

voi d

voi d

voi d

voi d

void

voi d

voi d

voi d

voi d

voi d

i srecordi ng() Returnsf al se if recording has been paused withuse_r ecor di ng() and the code
has been compiled withDEPT_RECORDI NG PAUSABL E defined. Otherwise returns ue.

conput e_t angent _| i near () Perform a tangent-linear calculation (forward-mode défdgiation) using
the stored differential statements. Before calling thisction you need call thedoubl e: : set _gr adi ent

or set _gr adi ent s function (see section 12) on the independent variablesttthednitial gradients, oth-
erwise the function will throw @r adi ent s_not _i ni ti al i zed exception. This function is synonymous
with f orwar d() .

conput e_adj oi nt () Perform an adjoint calculation (reverse-mode differditig using the stored
differential statements. Before calling this function yonaed call theadoubl e: : set gr adi ent or
set _gr adi ent s function on the dependent variables to set the initial gnaidi, otherwise the function
will throw a gr adi ent s_not _i ni ti al i zed exception. This function is synonymous withver se() .

i ndependent (const adoubl e& x) Before computing Jacobian matrices, you need to identiyirti
dependent and dependent variables, which correspond tolin@ns and rows of he Jacobian, respectively.
This function adds to the list of independent variables. If it is tinéh variable identified in this way, the
nth column of the Jacobian will correspond to derivativedwéspect tox.

dependent (const adoubl e& y) Addy to the list of dependent variables. If it is theh variable iden-
tified in this way, themth row of the Jacobian will correspond to derivativey afith respect to each of the
independent variables.

i ndependent (const adoubl ex x_ptr, sizet n) Add n independent variables to the list, which
must be stored consecutively in memory starting at the mgmainted to byx pt r .

dependent (const adoubl ex y ptr, sizet n) Addn dependent variables to the list, which must
be stored consecutively in memory starting at the memomtpdito byy ptr.

j acobi an( doubl ex j acobi an_out) Compute the Jacobian matrix, i.e., the gradient ofttdeependent
variables (identified with théependent (. . . ) function) with respect to theindependent variables (iden-
tified with i ndependent (. ..). Theresultis returned in the memory pointed tqg g obi an_out , which
must have been allocated to haick n values. The result is stored in column-major order, i.@ ntldiemen-
sion of the matrix varies fastest. If no dependents or inddpets have been identified, then the function
will throw a dependent s_or _i ndependent s_not _i dent i f i ed exception. In practice, this function calls
j acobi an_f orwar d if n < mandj acobi anreverseif n>m.

j acobi an_f or war d( doubl e* j acobi an_out) Compute the Jacobian matrix by executimgorward
passes through the stored list of differential statemehisjs typically faster thanacobi an_r ever se for
n<m

j acobi an_rever se(doubl ex jacobi an.out) Compute the Jacobian matrix by executimgreverse
passes through the stored list of differential statemethis;is typically faster thaf acobi an_f or war d
forn>m.

cl ear gradi ents() Clear the gradients set with tlet _gr adi ent member function of thadoubl e
class. This enables multiple adjoint and/or tangent-licakulations to be performed with the same record-

ing.

cl ear _i ndependent s() Clear the list of independent variables, enabling a newhlaoomatrix to be
computed from the same recording but for a different setdé¢pendent variables.

cl ear _dependent s() Clear the list of dependent variables, enabling a new Jaoabiatrix to be com-
puted from the same recording but for a different set of ddpatvariables.

si zet n.independents() Returnthe number of independent variables that have beetified.

si zet n_dependents() Returnthe number of dependent variables that have beetifiden
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sizet n.statenments() Returnthe number of differential statements in the recaydi

si zet n_operations() Return the total number of operations in the recording hestbtal number of terms
on the right-hand-side of all the differential statements.

si zet nmax_gradi ents() Returnthe number of working gradients that need to be storecer to perform a
forward or reverse pass.

std::sizet menory() Returnthe number of bytes currently used to store the @iffital statements and the
working gradients. Note that this does not include memdpocated but not currently used.

sizet n_gradients_registered() Each time aradoubl e object is created, it is allocated a unique index
that is used to identify its gradient in the recorded diffgi@ statements. When the object is destructed,
its index is freed for reuse. This function returns the nundigyradients currently registered, equal to the
number ofadoubl e objects currently created.

voi d print_status(std::ostream& os = std::cout) Printthe current status of tt& ack object, such
as number of statements and operations stored and allpdatéiie stream specified lys, or standard
output if this function is called with no arguments. SendingSt ack object to the stream using the<”
operator results in the same behaviour.

void print_statenents(std::ostream& os = std::cout) Printthe list of differential statements to the
specified stream (or standard output if not specified). Emehdorresponds to a separate statement, for
example [ 3] = 1.2xd[1] + 3.4xd[2]".

bool print_gradients(std::ostream& os = std::cout) Print the vector of gradients to the specified
stream (or standard output if not specified). This functietumsf al se if no set _gradi ent function
has been called to set the first gradient and initialize tretoveandt r ue otherwise. To diagnose what
conput e_t angent | i near andconput e_adj oi nt are doing, it can be useful to calti nt _gr adi ent s
immediately before and after.

voi d activate() Activate theSt ack object by copying its hi s pointer to a global variable that will be
accessed by subsequent operations involadgubl e objects. If anotheiSt ack is already active, a
stack_al ready_acti ve exception will be thrown. To check whether this is the castorheecalling
activate(), check thatthective_st ack() function (described below) returos

voi d deactivate() Deactivate thest ack object by checking whether the global variable holding thafer
to the currently activét ack is equal ta hi s, and if it is, setting it tad.

bool is_active() Returngrue ifthe St ack object is the currently active onkeal se otherwise.

void start() This function was present in version 0.9 to activatetack object, since in that version they
were not constructed in an activated state. This functienrioav been deprecated and will always throw a
f eat ur e_not _avai | abl e exception.

The following non-member functions are provided in tept namespace:
adept : : Stack* active_stack() Returns a pointer to the currently actiSeack object, or0 if there is none.

bool is_thread.unsafe() Returns true if your code has been compiled with
ADEPT_STACK_THREAD_UNSAFE, f al se otherwise.

12 Member functions of theadoubl e object

This section describes the user-oriented member functdtise adoubl e class. Some functions have
arguments with default values; if these arguments are edhitten the default values will be used. Some of these
functions throwAdept exceptions, defined in section 13.
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doubl e val ue() Return the underlyingoubl e value.

voi d set _val ue(doubl e x) Setthe value of thadoubl e object tox, without storing the equivalent differen-
tial statement in the currently active stack.

voi d set _gradient (const doubl e& gradi ent) Setthe gradient corresponding to thisoubl e variable.
The first call of this function (for anyadoubl e variable) after a new recording is made also initial-
izes the vector of working gradients. This function shoukd dalled for one or moredoubl e ob-
jects after a recording has been made but before a calt txk: : conput et angent _I i near () or
St ack: : conput e_adj oint ().

voi d get _gradi ent (doubl e& gradi ent) Set gradient to the value of the gradient correspond-
ing to this adoubl e object. This function is used to extract the result after dl d¢a
St ack: : conput e_t angent | i near () orSt ack: : conput e_adj oi nt (). Iftheset _gr adi ent function
was not called since the last recording was made, this fometill throw agr adi ent s_not _i ni ti al i zed
exception. The function can also throwm@adi ent _out _of _r ange exception if newadoubl e objects were
created since the firskt _gr adi ent function was called.

voi d add_derivative_dependence(const adoubl e& r, const adoubl e& g) Add a differential state-
ment to the currently active stack of the fodh = g x &r, wherel is theadoubl e object from which
this function is called. This function is needed to integfag software containing hand-coded Jacobians, as
described in section 9; in this cagés the gradiendl /or obtained from such software.

voi d append_derivative_dependence(const adoubl e& r, const adoubl e& g) Assuming that the
sameadoubl e object has just had itadd_deri vati ve_dependence member function called, this
function appends+ g x or to the most recent differential statement on the stack. & ¢halling
adoubl e object is different, then ar ong_gr adi ent exception will be thrown. Note that multiple
append_deri vati ve_dependence calls can be made in succession.

voi d add_deri vati ve_.dependence(const adoubl e*x r, const doubl ex g,
sizet n =1, sizet mstride = 1)
Add a differential statement to the currently active statkhe formdl = in:_ol n{i] x or[i], wherel
is theadoubl e object from which this function is called. If thest ri de argument is provided, then the
index to theg array will bei x g_st ri de rather thari. This is useful if the Jacobian provided is oriented
such that the relevant gradients foare not spaced consecutively.

voi d append_derivative_dependence(const adoubl ex rhs, const doublex g,

) 'sizet n =1, sizet gstride = 1) ) )
Assuming that the samedoubl e object has just called thedd_der i vat i ve_dependence function, this

function appendst+ Zin:f)l nfi] x or[i] tothe mostrecent differential statement on the stack.elttiling
adoubl e object is different, then ar ong_gr adi ent exception will be thrown. Thg_stri de argument
behaves the same way as in the previous function described.

The following non-member functions are provided in thiept namespace:

doubl e val ue(const adoubl e& x) Returns the underlying value of as adoubl e. This is useful to
enablex to be used infprintf function calls. It is generally better to usalept: : val ue(x)
rather than x.val ue(), because the former also works if you compile the code witke th
ADEPT_NO_AUTOVATI C_DI FFERENTI ATI ONflag set, as discussed in section 8.2.

voi d set val ues(adoubl ex x, sizet n, const double* x_.val) Setthe value of tha adoubl e ob-
jects starting at to the values irx_val , without storing the equivalent differential statemenittia currently
active stack.

voi d set _gradi ents(adoubl ex x, sizet n, const double* gradients) Set the gradients corre-
sponding to then adoubl e objects starting at to then doubl es starting agr adi ents. This has the
same effect as calling theet _gr adi ent member function of eachdoubl e object in turn, but is more
concise.
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voi d get _gradi ents(const adoubl ex y, sizet n, double* gradients) Copythe gradientof the
adoubl e objects starting ay into the n doubl es starting atgr adi ents. This has the same effect as
calling theget _gr adi ent member function of eachdoubl e object in turn, but is more concise. This
function can throw ayr adi ent _out _of _r ange exception if newadoubl e objects were created since the
firstset _gr adi ent s function orset _gr adi ent member function was called.

13 Exceptions thrown by theAdeptlibrary

Some functions in thédept library can throw exceptions, and all of the exceptions ttaat be thrown
are derived fromadept : : aut odi f f _excepti on, which is itself derived fromst d: : excepti on. All these
exceptions indicate an error in the users code, usuallycaded with callingAdept functions in the wrong order.

An exception-catching implementation that takes diffétions depending on whether a specific Adept
exception, a generéldept exception, or a nordept exception is thrown might have the following form:

try {

adept: : St ack stack;

/1 ... Code using the Adept library goes here ...
}

catch (adept::stack_already_active& e) {
/] Catch a specific Adept exception
std::cerr << "Error: " << e.what() << std::endl;
/1 ... any further actions go here ...
}
catch (adept::autodiff_exception& e) {
/] Catch any Adept exception not yet caught

std::cerr << "Error: " << e.what() << std::endl;
/1 ... any further actions go here ...

}

catch (...) {

/] Catch any exceptions not yet caught
std::cerr << "An error occurred" << std::endl;
/1 ... any further actions go here ...

}

All exceptions implement thehat () member function, which returnscanst char = containing an error mes-
sage. The following exceptions can be thrown, and all areémadept namespace:

gr adi ent _out _of range This exception can be thrown by tléoubl e: : get gr adi ent member function if
the index to its gradient is larger than the number of gradistored. This can happen if thdoubl e object
was created after the firatloubl e: : set _gr adi ent call since the lasst ack: : newr ecor di ng call. The
firstadoubl e: : set _gr adi ent call signals to the\dept stack that the main algorithm has completed and
so memory can be allocated to store the gradients ready éonafd or reverse pass through the differential
statements. If furthexdoubl e objects are created then they may have a gradient indexstbat of range
of the memory allocated.

gradi ents_not_initialized This exception can be thrown by functions that require tise dif working
gradients to have been initialized (particularly the fimes$ St ack: : conput e_t angent | i near and
St ack: : conmput e_adj oi nt ). This initialization occurs wheadoubl e: : set _gr adi ent is called.

st ack_al ready_acti ve This exception is thrown when an attempt is made to make épkat St ack object
“active”, but there already is an active stack in this threBlais can be thrown by thét ack constructor or
theSt ack: : acti vat e member function.

dependent s_or _i ndependent s_not _i denti fi ed This exception is thrown when an attempt is made to com-
pute a Jacobian but the independents and/or dependentadtdveen identified.

wrong_gr adi ent This exception is thrown by theadoubl e:: append.derivative dependence if
the adoubl e object that it is called from is not the same as that of the mostent
adoubl e: : add_deri vati ve_dependence.
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non_fi ni te_gradi ent This exception is thrown if the users code is compiled with plieprocessor variable
ADEPT_TRACK_NON.FI NI TE_GRADI ENTS defined, and a mathematical operation is carried out for fvthie
derivative is notfinite. This is useful to locate the sourtean-finite derivatives coming out of an algorithm.

f eat ur e_not _avai | abl e This exception is thrown by deprecated functions, sucktask: : start ().

14 Configuring the behaviour of Adept

The behaviour of thé\dept library can be changed by defining one or more of Auept preprocessor
variables. This can be done either by editing dldept . h file and uncommenting the relevatdef i ne lines in
sections 1 or 2 of the file, or by compiling your code witbxxx compiler options (replacingxx by the relevant
preprocessor variable. There are two types of preproceasiable: the first types only apply to the compilation
of user code, while the second types requireAtept library to be recompiled.

The preprocessor variables that apply only to user code@andttequire thédept library to be recompiled
are as follows:

ADEPT_STACK_THREAD_UNSAFE If this variable is defined, the currently active stack igstbas a global variable
but is not defined to be “thread-local”. This is slightly fastbut means that you cannot use multi-threaded
code with separate threads holding their own acsiveck object. Note that although defining this variable
does not require a library recompile, all source files thateng a single executable must be compiled with
this option (or all not be).

ADEPT_RECORDI NG.PAUSABLE This option enables an algorithm to be run both with and withautomatic
differentiation from within the same program via the fupot St ack: : pause._recordi ng() and
St ack: : conti nuerecording(). Note that although defining this variable does not requitibrary
recompile, all source files that make up a single executahk bree compiled with this option (or all not be).
Further details on this option are provided in section 8.1.

ADEPT_NO_AUTOVATI C.DI FFERENTI ATI ON This option turns off automatic differentiation by treatiadoubl e
objects asloubl e. It is useful if you want to compile one source file twice to gwice versions with and
without automatic differentiation. Further details orstbption are provided in section 8.2.

ADEPT_TRACK_NONLFI NI TE_.GRADI ENTS Often when an algorithm is first converted to use an operator-

overloading automatic differentiation library, the graiis come out as Not-a-Number or Infinity. The rea-
son is often that the algorithm contains operations for Withe derivative is not finite (e.g/a for a = 0),

or constructions where a non-finite value is produced busegiently made finite (e.g. expl.0/a) for

a = 0). Usually the algorithm can be recoded to avoid these prob] if the location of the problematic
operations can be identified. By defining this preprocesadgeble, anon_fi ni t e_gr adi ent exception

will be thrown if any operation results in a non-finite detiva. Running the program within a debugger
(and ensuring that the exception is not caught within thgm) enables the offending line to be identified.

ADEPT_I NI TI AL_.STACK_LENGTH This preprocessor variable is set to an integer, and is us#ttkadefault initial
amount of memory allocated for the recording, in terms ofrthmber of statements and operations.

ADEPT_REMOVE_NULL_STATEMENTS If many variables in your code are likely to be zero then retium operations
will be added to the list of differential statements. Forregpée, the assignmeat= bx cwith active variables
b andc both being zero results in the differential statemi@nt= 0 x éb+ 0 x dc. This preprocessor variable
checks for zeros and removes terms on the right-hand-sidiéfefential statements if it finds them. In this
case it would puda = 0 on the stack instead. This option slows down the recordaggs but speeds up the
subsequent use of the recorded stack for adjoint and Jacohleulations. The speed up of the latter is only
likely to exceed the slow down of the former if your code caméamany zeros. For most codes, this option
causes a net slow down.

ADEPT_COPY_CONSTRUCTOR.ONLY_ON_.RETURN_FROMFUNCTI ON If copy constructors foladoubl e objects are
only used in the return values for functions, then defininig greprocessor variable will lead to slightly
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faster code, because it will be assumed that when a copyrootatis called, the index to its gradient can
simply be copied because the object being copied will shorldestructed (otherwise communication with
the St ack object is required to unregister one and immediately regisie other). You need to be sure that
the code being compiled with this option does not invoke thgyaconstructor in any other circumstances.
Specifically, it must not include either of these construtsi “adoubl e x = y;” or “adoubl e x(y);”,
wherey is anadoubl e object. If it does, then strange errors will occur.

The preprocessor variables that require Buept library to be recompiled are as follows. Note that if these
variables are used they must be the same when compiling betlibrary and the user code. This is safest to
implement by editing thadept . h header file.

ADEPT_FLOATI NGPO NT_TYPE If you want to compileAdept to use a precision other than double, define
this preprocessor variable to be the floating-point typeuiregl, e.g. fl oat or | ong double. To
use from the compiler command-line, use the argumemDEPT_FLOATI NG.PO NT_TYPE=f | oat or
- DADEPT_FLOATI NG.PO NT_TYPE="1 ong doubl e".

ADEPT_STACK_STORAGE_STL Use the C++ standard template libramgct or orval arr ay classes for storing the
recording and the list of gradients, rather than dynamjalbcated arrays. In practice, this tends to slow
down the code.

ADEPT_MULTI PASS_SI ZE This is set to an integer, invariably a power of two, speaifythe number of rows or
columns of a Jacobian that are calculated at once. The optimalue depends on the platform and the
capability of the compiler to optimize loops whose lengtkriswn at compile time.

ADEPT_MULTI PASS_SI ZE ZERO.CHECK This is also set to an integer; if it is greater than
ADEPT_MULTI PASS.SI ZE, then the St ack: : j acobi an_reverse function checks gradients are non-
zero before using them in a multiplication.

15 Frequently asked questions

Why are all the gradients coming out of the automatic differentiation zero? You have almost certainly omit-
ted or misplaced the call of thelept : : St ack member functiontiew.r ecor di ng() ". It should be placed
after the independent variables in the algorithm have been lizi#d, but before any subsequent calcula-
tions are performed on these variables. If it is omitted acpt before the point where the independent
variables are initialized, the differential statementgesponding to this initialization (which are all of the
form dx = 0), will be placed in the list of differential statements amifl unhelpfully set to zero all your
gradients right at the start of a forward pass (resultinghfeocall tof or war d( ) ) or set them to zero right at
the end of a reverse pass (resulting from a calldeer se() ).

Can Adept reuse a stored tape for multiple runs of the same algrithm but with different inputs? No.
Adept does not store the full algorithm in its stack (as ADOLdoes in its tapes, for example), only
the derivative information. So from the stack alone you ednerun the function with different inputs.
However, rerunning the algorithm including recomputing terivative information is fast using Adept,
and is still faster than libraries that store enough infdifomain their tapes to enable a tape to be reused
with different inputs. It should be stressed that for anyethm that includes different paths of execution
(“if” statements) based on the values of the inputs, suclpa teould need to be rerecorded anyway. This
includes any algorithm containing a look-up table.

Why does my code crash with a segmentation faultThis means it is trying to access a memory address not
belonging to your program, and the first thing to do is to runryarogram in a debugger to find out at what
point in your code this occurs. If itis in thedept : : aReal constructor (note thatReal is synonymous
with adoubl €), then it is very likely that you have tried to initiate amlept : : adoubl e object before
initiating anadept : : St ack object. As described in section 5.1, there are good reasbgs/au need to
initialize theadept : : St ack object first.
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16 License

The Adept library is released under the GNU General Public LicenseL{GBrsion 3, which is available
athtt p: //ww. gnu. org/ li censes/ gpl . ht m . This license permits you to use and modify the library for an
purpose, but if you distribute a software package that ipoxates the library or a modified version of it, you must
release the source code for the entire software package tiredeonditions of the GNU GPL.

If you would like to useAdept under other licensing terms, for example in commercialveafe, please
contact Robin Hogarr ( j . hogan@ eadi ng. ac. uk).

In addition to the legally binding terms of the license, itéguested that you cite Hogan (2013) in publica-
tions describing algorithms and software that make useeftiept library. This is not a condition of the license,
but is good honest practice in science and engineering.
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