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• Coupled systems and coupled data assimilation (DA)

• Forecast error covariance in coupled DA

• Information flow in coupled DA

• Maximum Likelihood Ensemble Filter (MLEF)

• Coupled data assimilation results with MLEF

• Some challenges of coupled DA

• Future 

Overview
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Coupled models
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• Complex interactions between coupled system components
- Each component model interacts with the system driver
- System components may interact with each other
- Single or multiple executables

Coupled system 
driver

Model 1

Model 2

Model  ---

Model N

Coupled
modeling
system



• What is coupled data assimilation?

Coupled DA is data assimilation with coupled modeling systems

• How does coupled data assimilation differ from a standalone data 
assimilation for each component?

- Increased number of control variables (increased dimension)
- Increased complexity of control variables
- Generally unknown cross-component correlations
- Possibly different spatiotemporal scales

Coupled data assimilation
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(1) Standalone data assimilation for each component

Data assimilation options
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(2) Coupled data assimilation with all components

DA with 
component1-1 

and component-2

CV1
+

CV2

COUPLED 
MODELING 
SYSTEM (F1+F2)

Assimilation Analysis Forecast

Component-1 DA

Component-2 DA

CV1

CV2

COUPLED 
MODELING 
SYSTEM (F1+F2)

Assimilation Analysis Forecast



• Coupled DA can be interpreted as an augmented DA system

Mathematical details of coupled DA
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• Forecast

• Analysis

No major difference between coupled and standalone equations. 
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Review: Analysis correction

Singular Value Decomposition: Pf
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 Analysis increments are defined in the subspace spanned by the left SVs of the 
(SQRT) forecast error covariance

KF example: zobs = Pf

T /2H T (HPf H
T + R)-1(y - h(x f ))

xa = x f + Pf

1/2zobsAnalysis update:

x = x f + Pf

1/2wGeneric change of variable

to avoid matrix inversion:
(x - x f )T Pf

-1(x - x f ) Þ wT w

 Projection of (transformed) observations onto the right SVs of the (SQRT) 
forecast error covariance is critical for allowing the impact of observations



Forecast uncertainty – 32 ensembles
(Typhoon Nabi, valid 03 Sep 2005 0300 UTC)

Specific humidity (g/kg) Wind (m/s)

Insufficient forecast uncertainty 
prevents successful assimilation

Sufficient forecast uncertainty is necessary for successful assimilation
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Comments on forecast error covariance in coupled DA
 Analysis correction subspace

As for the standalone multivariate system, forecast error covariance singular vectors 
define the space of analysis corrections, as well as whether or not the observations 
can have an impact on the analysis.

 Flow-dependent error covariance 

May be even more relevant than in standalone DA, as cross-component correlations 
may be completely unknown.

 Spatiotemporal scales

By using model forecasts to define flow dependent error covariance, dependencies 
that develop during the couple system forecast will be present in the coupled 
forecast error covariance. Otherwise, the covariance modeling has to explicitly 
include interactions between scales.

 Error covariance localization may be challenging



Coupled DA and information

 Shannon entropy

Total uncertainty of the coupled system is reduced compared to the uncertainty of 
individual components

 Joint entropy can be used to represent the entropy of a coupled system 

H X{ } = - p(x)log(p(x))dxò

DH = H X{ }- H X |Y{ }

 Impact of data assimilation: change of entropy due to observations

 (Coupled) data assimilation can be interpreted as processing and exchange of 
information between system components with the aim of maximizing the 
efficiency of  information flow

H(X1, X2 ) = H(X1)+ H(X2 )- MI(X1, X2 ) MI(X1, X2 ) ³ 0

H(X1, X2 ) £ H(X1)+ H(X2 )



Maximum Likelihood Ensemble Filter (MLEF)

Each uncertainty column-vector is a member of an“ensemble” (i.e. span)

x f = m(xa ) xi

f = m(xa + pi

a )

pi

f = xi

f - x f = m(xa + pi

a )- m(xa )

Transport uncertainty in time by a nonlinear model m (one span vector at a time)

Forecast: Uncertainty evolution using a nonlinear prediction model

Analysis: Iterative minimization of an arbitrary nonlinear cost function

 Maximum a-posteriori (MAP) method

 Use best applicable minimization method

 Optimal Hessian preconditioning

  
J (x) =

1

2
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T
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1

2
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T
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Role of Hessian (second derivative)
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• For Gaussian cost function, MLEF applies a two-step 
change of variable to achieve Hessian preconditioning

• Optimal preconditioning is the transpose of 
the inverse square root of the Hessian

G = EET

x = x f + E-T w

Gw = E-1(EET )E-T = I

G = Pf

-1 + H T R-1H

f (x)

f (w)

x = x f + Pf

1/2w

w = (I + ZT Z)-1/2z Zi = R-1/2[h(x + pi

f )- h(x)]



Addressing nonlinearity and non-
differentiability of cost function in MLEF

J(w) =
1

2
wT w +

1

2
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1/2w)éë ùû
T
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Use finite-difference representation of derivatives in iterative minimization:
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Standard Taylor expansion of cost function:
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Calculate the difference without Taylor expansion:
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Test case: Discontinuous cubic observation operator

1-dimensional Burgers model

simulating a shock-wave

  

¶u

¶t
+ u

¶u

¶x
= m

¶2u

¶x2

Observation operator is a
non-differentiable cubic function

  

h(u) =
u3 for u ³ 0.5

-u3 for u < 0.5

ì

í
ï

îï

Nonlinear and non-differentiable 
problem: Burgers model



Exp 1 (MLEF): Use nonlinear differences h(u + pi

f ) - h(u)

Exp 2 (GRAD): Use the linearity/differentiability assumption
 H pi

f

MLEF nonlinear minimization 

Cost function Gradient norm

Clear benefit of using finite difference representation of  derivatives

(Zupanski et al. 2008)



MLEF flow chart

HESSIAN 

PRECONDITIONING

CONTROL VARIABLE UPDATE: xa 
t ; Pa

t

FIRST GUESS: xf 
t ; Pf 

t

INPUT CONTROL VARIABLE xa
t-1; Pa

t-1

Prediction Model

Ensemble + Control

Observation operators

Ensemble + Control

NEW DA CYCLE

ITERATIVE

MINIMIZATION

MINIMIZATION

k=1
NO

LINE SEARCH

A hybrid between ensemble and 

variational DA

 Full-rank or reduced-rank

 Deterministic first guess forecast

 MAP: Analysis is the maximum of a 

posterior pdf

 Nonlinear analysis solution by an 

iterative minimization

 Improved minimization efficiency by 

an implicit Hessian preconditioning



 User-friendly compilation (self-contained libraries: LAPACK) 
 Easy experiment specifications (control variable, minimization, localization)  
 Parallel (MPI) – optional
 Fortran 90/95 - based

Modular algorithm
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Prediction model

Model interface Observation interface

Observation operator(s)

MLEF

Minimization algorithms

Forecast scheduler

Observation scheduler

Post-processing
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Understanding information flow in coupled DA: 
single-point, 2-variable coupled system
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 Consider a single-point coupled atmosphere-aerosol system with two 
variables: 

(1) Atmosphere (xatms)

(2) Aerosol (xaero)

 Assume single observation of atmospheric variable yatms



Analysis solution 
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xatms

a =
1

1+ e 2
xatms

f +
e 2

1+ e 2
yatms e 2 =

(s f
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2 )atm

1- When the cross-component correlation is zero, there is no transfer of information 
between the two components
2- When the cross-component correlation exists, the information from atmospheric 
observation is transferred to the aerosol initial conditions, and thus the information 
flow and efficiency of the system is improved

Atmospheric analysis is identical to a standalone atmospheric DA 

Aerosol analysis depends on the cross-component correlation ratms,aero

ratms,aero = 0 Þ xaero

a = xaero
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Some coupled DA results with MLEF

Models (regional)

• WRF-Chem

- CBMZ and MOZART chemistry

- GOCART aerosol

• WRF-ARW

- Noah land surface model (LSM)

- Noah-MP LSM

Observations

• Atmospheric observations

- NOAA GSI forward nonlinear component as observation operator

• Chemistry observations

- NASA OMI total column o3, no2, so2

• Aerosol observations

- NASA OMI aerosol optical depth (AOD)

• Gravity variations

- NASA GRACE



Assimilation of OMI AOD observations

Experimental setup

• WRF-CHEM model with with CBMZ chemistry and GOCART aerosol options

• 30 km / 31 layer

• OMI AOD observations at 500 nm (AOD observation operator)

• NOAA atmospheric observations (forward GSI operator)

• 32 ensembles, 6-hour assimilation period

• Control variables include mixing ratios of GOCART dust species (500, 

1400, 2400, 4500, 8000 nm) and atmospheric variables (pressure, 

temperature, winds, humidity)

• Dust storm over Korea and Japan: 12-13 May 2011

Experiments for assessing the impact of AOD observations in data assimilation:

(1) Assimilation of atmospheric observations only (ATM),

(2) Assimilation of AOD and atmospheric observations (AOD+ATM)
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Valid 0600 UTC 13 May 2011

DA verification in AOD observation space (c5)

Control 
(atmospheric observations only)

y - h(xa )

AOD difference

y - h(xa )
CNTL

- y - h(xa )
AOD

Positive difference (red color) implies 
an improvement of analysis due to 
additional AOD observations

Analysis Residuals  



Analysis increments (xa-xf)
Impact of observations on dust variable

• Atmospheric observations impact chemistry/aerosol analysis
• The impact is small in magnitude, but could be valuable
• AOD observations still bring important new information

DUST_3 (2400 nm) at 700 hPa, valid 0600 UTC 12 May 2011

ATM (ug/kg-dry air) AOD+ATM (ug/kg-dry air)



 Most positive impact over the Gobi desert in Mongolia

 Some positive impact over China and Yellow sea
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Impact of AOD observations measured by DFS: 
250 hPa

Difference: DFS (AOD+ATMS) – DFS (ATM)



• Coupled atmosphere-soil hydrology data assimilation
• Control variables: temperature, pressure, wind, atmospheric humidity, snow, 

cloud variables, soil moisture, soil temperature
• EWT observations: averaged 30 days differences of the
column soil moisture, snow, and canopy water
• Data assimilation interval: 30 days
• WRF model (30 km /31 layer) with Noah-MP LSM
• Geographical area: Siberia
• MLEF data assimilation method

Assimilation of Gravity Recovery and Climate (GRACE) 
Equivalent Water Thickness (EWT) Observations

Examples of other GRACE related research



GRACE Data Assimilation Results:
EWT Guess, Analysis and Observations

Guess Analysis

Observations

Analysis is closer to 
observations



GRACE Data Assimilation Results:
Impact on Land Surface analysis increments

Surface Soil TemperatureSurface Soil Moisture

Snow Water Equivalent Snow Depth



Specific humidity  at 950 hPa

GRACE Data Assimilation Results:
Impact on Unobserved Atmospheric analysis increments

Cloud Water at 850 hPa

• Impact of EWT observations on atmospheric initial conditions
• Possible due to cross-component correlations between land surface and 

atmosphere 



Synoptic situation
 0600 UTC on April 5, 2013
 Passing low-pressure system over south Siberia

Modeling/DA system:
• WRF with Noah and Noah-MP LSMs
• 30 km/31 layers
• MLEF with 32 ensembles
• 6-hour assimilation window
• Control variables include atmospheric and soil variables

Experiments:
• Examine the impact of cross-component covariance between T-2m and soil 

variables by performing a single observation experiments with atmospheric T-2m 
observation

• Examine the flow-dependent impact of land surface models on cross-component 
covariance
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Coupled atmosphere – land surface DA: 
single observation experiments



Wind at 500 hPa
Valid 0600 UTC on April 5, 2013
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Synoptic situation

P1

P2

Synop tic p atterns

 Sea level pressure (shaded) indicates a strong low-pressure system

 Precipitation pattern suggest a frontal zone associated with the low-pressure 
system

 Above freezing values at site P1, but below freezing at site P2

 Deeper snow depth and complete coverage over the site P2, while at site P1 the 
snow depth is smaller

P1

P2

Synop tic p atterns

Accumulated precipitation (mm)
Valid 0600 UTC on April 5, 2013



31

Soil moisture response with Noah-MP 
(top soil layer)

 Different sign and strength of the response:

- P1 has positive and relatively strong response (0.1 g/kg)

- P2 has negative and weak response (0.001 g/kg) – snow-covered surface

NOAH NOAH-m p

P1 P2

NOAH NOAH-m p

Flow-dependent covariance important for accurate representation 
of coupled DA system 
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Soil temperature response, P1 site

 Well-defined, localized response in vertical and horizontal

 Strongest response near the top layer

 Noah has a weak negative response (~0.02 K)

 Noah-MP has a stronger positive response (0.045 K)

Soil layers

NOAH NOAH-m pNOAH NOAH-m p

Noah Noah-MPL=1

L=2

L=3

L=4

Cross-component covariance is significantly  impacted by the LSM model



Coupled chemistry-atmosphere: 
Assimilation of synthetic GEMS radiances

Experimental setup

• WRF-CHEM model with with MOZART chemistry

• 30 km / 51 layer

• Model top at 10 hPa

• 32 ensembles, 6-hour assimilation period

• Control variables include the mixing ratios of MOZART chemistry (o3,no2,so2,co,hcho) 

and atmospheric variables (pressure, temperature, winds, humidity)

• Storm over Korea and Japan: 10-13 May 2011

Observations:

• GEMS synthetic radiance observations at 320 nm wavelength

• OMI total column chemistry observations (o3, no2, so2)

• NOAA atmospheric observations (forward GSI operator)



DA impact in GEMS radiance observation space

Innovation vector for radiance 
Valid 0600 UTC 10 May 2011

- GEMS radiance innovation shows reduction due to assimilation, indicated by positive values 
on the right panel
- GEMS RMS error reduced by 10 %
- Total cost function decrease by 20%

yobs - h(x f ) yobs - h(x f ) - yobs - h(xa )

Assimilation of atmospheric, chemistry and synthetic radiance observations helps improve 
all components of the coupled system 



Important issues: Error covariance localization 
in coupled DA

• Model/analysis space: 

• Observation space:
 r R-1

 
r Pf

Consider land surface – atmosphere coupled system

• In general, different localization length for land and for atmosphere
• Assume atmospheric observation close to surface:

- surface temperature, surface specific humidity, low-frequency 
microwave radiance (e.g., AMSR2)
- impacts both land surface and atmosphere

• With observation space localization, it is difficult to use proper localization scales 
when observation is “shared” between two components

• Model space localization appears to be a more natural, straightforward approach
• Important choice of vertical coordinate in the analysis



Important issues: Quantifying coupling 
strength
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One can use mutual information to quantify the coupling strength:
(1) Strong coupling implies intense sharing of information, thus large MI
(2) Weak coupling implies marginal sharing of information, thus small MI

Mutual information (MI) measures the information shared by two processes:

MI(X1, X2 ) = - p(x1, x2 )log
p(x1, x2 )

p(x1)p(x2 )

é

ë
ê

ù

û
údx1 dx2

x2

ò
x1

ò

Joint entropy of two processes, X1 and X2, is: 

H (X1, X2 ) = - p(x1, x2 )log p(x1, x2 )dx1 dx2

x2

ò
x1

ò

Mutual information has values between 0 and infinity:
MI=0 => independent processes
MI=“large” => fully dependent processes



Quantifying coupling strength: Gaussian pdfs
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Using det Pf( ) = det P11( )det P22( )det I - P11

-1P12P22

-1P12

T( )

With Gaussian pdfs, the mutual information is defined in  terms of the covariance Pf

• Mutual information can be used in practical data assimilation to quantify 
coupling strength

• Formulation (A) may be preferable for computational stability since it 
avoids matrix inversion 

• Formulation (B) is more revealing as it relates to correlations

MI(X1, X2 ) = -
1

2
ln

det Pf( )
det P11( )det P22( )

(A)

MI(X1, X2 ) = -
1

2
ln det I - P11

-1P12P22

-1P12

T( )é
ë

ù
û (B)

(Zupanski 2016)



Summary and Future

• Information flow is enhanced by using cross-component covariances, 
leading to more efficient use of available observations

• Initial effort in developing coupled DA should focus on estimating, 
and eventually utilizing, cross-component covariances

• Need to consider additional options for the control variable, such as 
empirical parameters, systematic model error, moving time average

• Introduce entropy measures for quantifying coupling strength

• Error covariance localization for coupled systems requires more 
research and better understanding

• Possibly use more general formulation of analysis coordinates to 
describe localization length in coupled systems
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Degrees of Freedom for Signal (DFS) 
calculation in MLEF

 Eigenvalue decomposition is used in MLEF to invert the Hessian matrix

 DFS is a by-product of MLEF

DFS = trace I - PaPf

-1éë ùû

Change of entropy / degrees of freedom for signal in Gaussian framework:

DFS = trace (I + ZT Z)-1ZT Zéë ùû

ZT Z =ULUT

In reduced-rank ensemble system, such as MLEF,  ds can be computed exactly

Zi = R-1/2[h(x + pi

f )- h(x)]

DFS =
li

1+ lii

å


