What Makes Filtering Hard?

Andrew M Stuart

Mathematics Institute, University of Warwick

cw/S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso arXiv.1511.06196

> cw/D.Kelly In Preparation

Funded by: DARPA, EPSRC, ERC, ONR

1

Table of Contents

Filtering

Convergence of Filters

Linear Filtering Problem

Comparison of Optimal and Standard Proposals

Conclusions

Table of Contents

Filtering

Convergence of Filters

Linear Filtering Problem

Comparison of Optimal and Standard Proposals

Conclusions

Problem Statement

Stochastic Dynamics Model

$$v_{j+1} = \psi(v_j) + \xi_j, \quad \xi_j \sim N(0, Q)$$

$$y_{j+1} = h(v_{j+1}) + \eta_{j+1}, \quad \eta_j \sim N(0, R).$$

Objective of Filtering

Define $\mu_0 = \mathbb{P}(v_0), \quad \mu_j = \mathbb{P}(v_j|Y_j), \quad Y_j := (y_1, \dots, y_j).$ Sequentially Update $\mu_j \mapsto \mu_{j+1}$.

Propagation of Probabilities I

Using

$$\mathbb{P}(v_{j+1}|Y_j) = \mathbb{P}(v_{j+1}|v_j)\mathbb{P}(v_j|Y_j)$$

we obtain

Densities

$$\mathbb{P}(v_{j+1}|Y_{j+1}) = \frac{1}{\mathbb{P}(y_{j+1}|Y_j)} \mathbb{P}(y_{j+1}|v_{j+1}) \int \mathbb{P}(v_{j+1}|v_j) \mathbb{P}(v_j|Y_j) dv_j.$$

Measures

 $\mu_{j+1} = L_j P \mu_j.$

P. Del Moral, A. Doucet and A. Jasra Sequential Monte Carlo samplers, J. Royal Stat. Soc. B 68(2006).

Propagation of Probabilities II

Using

$$\mathbb{P}(v_{j+1}|v_j, y_{j+1}) = \frac{1}{\mathbb{P}(y_{j+1}|v_j)} \mathbb{P}(y_{j+1}|v_{j+1}) \mathbb{P}(v_{j+1}|v_j)$$

we also find that

Densities

$$\mathbb{P}(v_{j+1}|Y_{j+1}) = \frac{1}{\mathbb{P}(y_{j+1}|Y_j)} \int \mathbb{P}(v_{j+1}|v_j, y_{j+1}) \mathbb{P}(y_{j+1}|v_j) \mathbb{P}(v_j|Y_j) dv_j.$$

Measures

 $\mu_{j+1}=Q_j\mu_j.$

A. Doucet, S. Godsill and C. Andrieu On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing 10(2000).

Sampling and Particle Filters

Monte Carlo Sampling

$$S^N \mu(du) = \sum_{i=1}^N rac{1}{N} \delta_{u^i}(du), \ u^i \sim \mu.$$

Standard Proposal

$$\mu_{j+1}^N = L_j S^N P \mu_j^N, \quad \mu_0^N = \mu_0.$$

Optimal Proposal

$$\mu_{j+1}^N = S^N Q_j \mu_j^N, \quad \mu_0^N = S^N \mu_0$$

The Standard Proposal

$$\begin{split} \mu_0^N &= \mu_0; \ \mu_j^N(du) = \sum_{i=1}^N w_j^i \delta_{u_j^i}(du), \ j \ge 1, \\ u_{j+1}^i &= \psi(u^i) + \xi_j^i, \quad u_j^i \sim \mu_j^N, \ \xi_j^i \sim N(0, Q) \\ \widehat{w}_{j+1}^i &= \exp\left(-\frac{1}{2}|y_{j+1} - h(u_{j+1}^i)|_{\mathbb{R}}^2\right), \\ w_{j+1}^i &= \widehat{w}_{j+1}^i / \sum_{m=1}^N \widehat{w}_{j+1}^m. \end{split}$$

The Optimal Proposal (case $h(\cdot) = H \cdot$)

$$\begin{split} \mu_{j}^{N}(du) &= \sum_{i=1}^{N} \frac{1}{N} \delta_{u_{j}^{i}}(du), \ j \geq 0, \\ \widehat{u}_{j+1}^{i} &= (I - KH) \psi(u_{j}^{i}) + Ky_{j+1} + \zeta_{j}^{i}, \ \zeta_{j}^{i} \sim N(0, C) \\ \widehat{w}_{j+1}^{i} &= \exp\left(-\frac{1}{2}|y_{j+1} - H\psi(u_{j}^{i})|_{\mathbf{S}}^{2}\right) \\ w_{j+1}^{i} &= \widehat{w}_{j+1}^{i} / \sum_{m=1}^{N} \widehat{w}_{j+1}^{m} \\ \mu_{j+1}^{N}(du) &= \mathbf{S}^{N} \left(\sum_{i=1}^{N} w_{j+1}^{i} \delta_{\widehat{u}_{j+1}^{i}}(du)\right). \end{split}$$

Here

$$S = HQH^* + R, \ K = QH^*S^{-1},$$
$$C = (I - KH)Q.$$

EnKF (case $h(\cdot) = H \cdot$)

$$\begin{split} \mu_j^N(du) &= \sum_{i=1}^N \frac{1}{N} \delta_{u_j^i}(du), \ j \ge 0, \\ u_{j+1}^i &= (I - K_{j+1}H) \psi(u_j^i) + K_{j+1} y_{j+1} + \zeta_j^i, \ \zeta_j^i \sim N(0, C_{j+1}) \end{split}$$

Here \hat{C}_{j+1} is the empirical covariance of the predicted particle positions

$$\widehat{u}_{j+1}^i = \psi(u_j^i) + \zeta_j^i$$

and

$$S_{j+1} = H\widehat{C}_{j+1}H^* + R, \ K_{j+1} = \widehat{C}_{j+1}H^*S^{-1},$$

 $C_{j+1} = (I - K_{j+1}H)Q.$

References

It's all about the weights

- T. Bengtsson, P. Bickel, B. Li, Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems, Probability and Statistics: Essays in Honour of D.A. Freeman, 2008.
 - C. Snyder, T. Bengtsson, P. Bickel, Obstacles to high-dimensional particle filtering, Monthly Weather Review, 136(2008).
- C. Snyder, Particle filters, the 'optimal' proposal and high-dimensional systems, In Proceedings of the ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, 2011.
 - M. Ades, P.J. van Leeuwen, An exploration of the equivalent weights particle filter, Quarterly Journal of the Royal Meteorological Society, 139(2013).
 - A. Chorin, M. Morzfeld and X.Tu Implicit particle filters for data assimilation, Comm. Appl. Math. and Comp. Sci., 5(2014).
 - A. Chorin, M. Morzfeld, *Conditions for successful data assimilation*, J. Geophysical Research, **118**(2014).
 - S. Reich, A dynamical systems framework for intermittent data assimilation, BIt Numerical Mathematics, 51(2011).

Table of Contents

Filtering

Convergence of Filters

Linear Filtering Problem

Comparison of Optimal and Standard Proposals

Conclusions

Metric on Random Measures

Let $(\mathcal{X}, \mathcal{F})$ be an arbitrary measurable space and ν a priobability measure. Then

$$\nu(\phi) := \int_{\mathcal{X}} \phi(u) \nu(du).$$

If ν_1, ν_2 are random probability measures then we introduce a metric:

$$d(
u_1,
u_2):=\Bigl(\sup_{|\phi|\leq 1}\mathbb{E}\Bigl[ig(
u_1(\phi)-
u_2(\phi)ig)^2\Bigr]\Bigr)^{rac{1}{2}}$$

P. Rebeschini and R. Van Handel. Can local particle filters beat the curse of dimensionality? Ann. Appl. Prob. 25(2015).

P. Del Moral. Feynman-Kac formulae: genealogical and interacting particle systems with applications 2004.

The Standard Proposal

Recall

$$\mu_{j+1} = L_j P \mu_j, \mu_{j+1}^N = L_j S^N P \mu_j^N, \mu_0^N = \mu_0$$

Theorem 1

Assume that h is a bounded nonlinear function. Then there exists $\kappa = \kappa(Y_J)$ such that

$$d(\mu_j,\mu_j^N)^2 \leq rac{\kappa}{N}.$$

P. Rebeschini and R. Van Handel. Can local particle filters beat the curse of dimensionality? Ann. Appl. Prob. 25(2015).

 $P\mu_j$ is proposal for importance sampling of μ_{j+1} .

The Optimal Proposal

Recall

$$\mu_{j+1} = Q_j \mu_j, \mu_{j+1}^N = S^N Q_j \mu_j^N, \mu_0^N = S^N \mu_0.$$

Theorem 2

Assume that ψ is a bounded nonlinear function and $h(\cdot) = H \cdot is$ linear. Then there exists $\kappa = \kappa(Y_J)$ such that

$$d(\mu_j,\mu_j^N)^2 \leq rac{\kappa}{N}.$$

D.T.B. Kelly and A.M. Stuart. In preparation (2016).

 Q_j factors into importance sampling followed by conditioned dynamics when applied to a sum of Dirac measures.

The EnKF

Theorem 3

Assume that $\psi(\cdot) = M \cdot$ and $h(\cdot) = H \cdot$ is linear. Then there exists $\kappa = \kappa(Y_J)$ such that

 $\overline{d(\mu_j,\mu_j^N)^2} \le rac{\kappa}{N}.$

F. Le Gland, V. Monbet and V.-D. Tran. INRIA Report 7014(2009).

The paper also identifies the limit of μ_j^N obtained in the nonlinear, non-Gaussian setting and shows that it is not μ_j . Suggests using EnKF as a proposal for importance sampling.

Autonormalized Importance Sampling (IS)

 π and μ probability measures in the arbitrary measurable space $(\mathcal{X}, \mathcal{F})$. Assume $\mu \ll \pi$ so that

$$\mu(du) = g(u)\pi(du) \Big/ \int_{\mathcal{X}} g(u)\pi(du).$$

Applying the Monte Carlo sampling operator twice gives

$$\mu(\phi) = rac{\pi(\phi g)}{\pi(g)} pprox rac{S^N \pi(\phi g)}{S^N \pi(g)} := \mu^N(\phi)$$

IS Convergence

Thus we have the approximation of μ defined by, for $u^i \sim \pi$,

$$\mu^{N} = \sum_{i=1}^{N} w^{i} \delta_{u^{i}}, \qquad w^{i} = \frac{g(u^{i})}{\sum_{k=1}^{N} g(u^{k})}.$$

Define
$$\rho := \frac{\pi(g^2)}{\pi(g)^2} \in [1, \infty].$$

Theorem 4

$$d(\mu^N,\mu)^2 \leq rac{4}{N}
ho.$$

Thus ρ , and its dependence on the problem at hand, is key.

S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso and A.M. Stuart. arXiv.1511.06196

Table of Contents

Filtering

Convergence of Filters

Linear Filtering Problem

Comparison of Optimal and Standard Proposals

Conclusions

IS for Filtering

Filtering

Signal: $v_1 = Mv_0 + N(0, Q), \quad v_0 \sim N(0, P) = \mathbb{P}_0.$ Data: $y_1 = Hv_1 + N(0, R).$ Find: $\mathbb{P}(v_1|y_1).$

Standard proposal: Top Route: dynamics, then inverse problem. **Optimal proposal**: Bottom Route: inverse problem, then dynamics.

C. Snyder. Particle filters, the "optimal" proposal and high-dimensional systems. In Proceedings of the ECMWF Seminar on Data Assimilation for Atmosphere and Ocean, 2011.

Inverse Problem: Standard Proposal

Filtering

Signal: $v_1 = Mv_0 + N(0, Q),$ $v_0 \sim N(0, P) = \mathbb{P}_0.$ Data: $y_1 = Hv_1 + N(0, R).$ Target: $\mu := \mathbb{P}(v_1|y_1).$

Behaviour of filtering model determined by inverse problem

$$y_1 = Ku + \eta, \quad u \sim N(0, \Sigma), \quad \eta \sim N(0, \Gamma),$$

with

- Target $\mu = \mathbb{P}(v_1|y_1) : K = H, \Gamma = R, \Sigma = MPM^* + Q$
- Proposal $\pi_{st} = \mathbb{P}(v_1)$.

Inverse Problem: Optimal Proposal

Filtering

Signal: $v_1 = Mv_0 + N(0, Q),$ $v_0 \sim N(0, P) = \mathbb{P}_0.$ Data: $y_1 = Hv_1 + N(0, R).$ Target: $\mu := \mathbb{P}(v_0|y_1).$

Behaviour of filtering model determined by inverse problem

$$y_1 = Ku + \eta, \quad u \sim N(0, \Sigma), \quad \eta \sim N(0, \Gamma),$$

with

- Target $\mu = \mathbb{P}(v_0|y_1) : K = HM, \Gamma = HQH^* + R, \Sigma = Q$
- Proposal $\overline{\pi_{st}} = \mathbb{P}(v_0)$.

Linear Bayesian Inverse Problems in Hilbert Space

Interested in recovering $u \in \mathcal{H}$ from data $y = Ku + \eta \in \mathcal{H}$.

Bayesian Inverse Problem

Prior (proposal): $u \sim \pi = N(0, \Sigma)$ Data: $y = Ku + \eta \in \mathcal{Y}, \quad \eta \sim N(0, \Gamma)$ $u | y \sim \mu = N(m, C).$

Linear Bayesian Inverse Problems in Hilbert Space

Interested in recovering $u \in \mathcal{H}$ from data $y = Ku + \eta \in \mathcal{H}$.

Bayesian Inverse Problem

Prior (proposal): $u \sim \pi = N(0, \Sigma)$ Data: $y = Ku + \eta \in \mathcal{Y}, \quad \eta \sim N(0, \Gamma)$ $\begin{cases} u | y \sim \mu = N(m, C). \end{cases}$

Let
$$y_0 = \Gamma^{-\frac{1}{2}} y$$
 and $S = \Gamma^{-\frac{1}{2}} K \Sigma^{\frac{1}{2}}$. Then

Equivalent Bayesian Inverse Problem

Prior (proposal):
$$u_0 \sim \pi_0 = N(0, I)$$

Data: $y_0 = Su_0 + \eta_0 \in \mathcal{Y}_0, \quad \eta_0 \sim N(0, I)$ $u_0 | y_0 \sim \mu_0 = N(m_0, C_0).$

Intrinsic Dimension

Key: Eigenvalues of
$$A := S^*S = \Sigma^{1/2}K^*\Gamma^{-1}K\Sigma^{1/2}$$
.

$$\operatorname{efd} = \operatorname{Tr}\left((I+A)^{-1}A\right)$$
 $\tau = \operatorname{Tr}(A)$

(efd) Spiegelhalter, Best, Carlin, Van der Linde, Bayesian measures of model complexity and fit, 2002.

 (τ) Bengtsson, Bickel, and Li, Curse-of-dimensionality revisited: Collapse of the particle filter in very large systems, 2008.

Lemma 5
$$\frac{1}{\|I+A\|}\tau \leq \text{efd} \leq \tau.$$
$$\text{efd} = \text{Tr}\left((\Sigma - C)\Sigma^{-1}\right) \leq \min\{d_u, d_y\},$$
$$\tau = \text{Tr}\left((\Sigma - C)C^{-1}\right).$$

Link Between τ , efd, ρ and $\mu \ll \pi$

Theorem 6

Let $\nu(du, dy) = \mathbb{P}(dy|u)\pi(du)$ and assume A bdd. Equivalent: i) efd $< \infty$.

- ii) $\tau < \infty$.
- iii) For ν -a.a. y, $\mu(du) \propto g(u; y)\pi(du)$ and

 $0<\pi\bigl(g(\cdot;y)\bigr)<\infty.$

iv) It holds $0 < g(u; y) < \infty \nu$ -a.s. and for ν -a.a. y

$$ho := rac{\pi\left(g(\cdot;y)^2
ight)}{\pi(g(\cdot;y))^2} < \infty.$$

S.Agapiou, O.Papaspiliopoulos, D. Sanz-Alonso and A.M. Stuart. arXiv.1511.06196

Link Between τ , efd, ρ and $\mu \ll \pi$

Table of Contents

Filtering

Convergence of Filters

Linear Filtering Problem

Comparison of Optimal and Standard Proposals

Conclusions

Ordering by τ

Filtering

Signal: $v_1 = Mv_0 + N(0, Q),$ $v_0 \sim N(0, P) = \mathbb{P}_0.$ Data: $y_1 = Hv_1 + N(0, R).$ Target: $\mathbb{P}(u|y_1), u = (v_0, v_1).$

Standard ProposalOptimal ProposalS $R^{-\frac{1}{2}}H(MPM^* + Q)^{\frac{1}{2}}$ $(HQH^* + R)^{-\frac{1}{2}}HMP^{\frac{1}{2}}$

Recall that
$$A = S^*S$$
, efd = Tr $((I + A)^{-1}A)$, $\tau =$ Tr (A) .

Theorem 7

$$\tau_{st} \geq \tau_{op}$$

Diagonal Example: Small Noise and High Dimensions

$$M = H = I \in \mathbb{R}^{d \times d}$$
, and $R = rI$, $Q = qI$, with $r, q > 0$.

Stationary regime
$$P_{\infty} = \frac{\sqrt{q^2 + 4qr - q}}{2} I$$
,

Chorin and Morzfeld. Conditions for successful data assimilation, 2013.

$$A_{st} = rac{\sqrt{q^2 + 4qr} + q}{2r} \, I, \qquad A_{op} = rac{\sqrt{q^2 + 4qr} - q}{2(q+r)} \, I.$$

Outside stationarity: P = pI, with p > 0 then

$$A_{st} = rac{p+q}{r}I, \qquad A_{op} = rac{p}{q+r}I.$$

Diagonal Example: Small Noise and High Dimensions

Regime	Param.	$eig(A_{st})$	$eig(A_{op})$	ρ_{st}	$ ho_{op}$			
Noise	r ightarrow 0	r^{-1}	r	$\mathcal{O}(\mathbf{r}^{-\mathbf{d}/2})$	$\mathcal{O}(1)$			
	$r = q \rightarrow 0$	1	1	$\mathcal{O}(1)$	$\mathcal{O}(1)$			
Large d	$d ightarrow \infty$	1	1	$\mathcal{O}(\exp(\mathbf{d}))$	$\mathcal{O}(\exp(\mathbf{d}))$			
Table: $P = P_{\infty}$.								

Regime	Param.	$eig(A_{st})$	$eig(A_{op})$	$ ho_{st}$	$ ho_{op}$			
Noise	$r \rightarrow 0$	r^{-1}	1	$\mathcal{O}(\mathbf{r}^{-\mathbf{d}/2})$	$\mathcal{O}(1)$			
	r = q ightarrow 0	r ⁻¹	r^{-1}	$\mathcal{O}(\mathbf{r}^{-\mathbf{d}/2})$	$\mathcal{O}(\mathbf{r}^{-\mathbf{d}/2})$			
Large d	$d ightarrow \infty$	1	1	$\mathcal{O}(\exp(\mathbf{d}))$	$\mathcal{O}(\exp(\mathbf{d}))$			
Table: $P = pI$.								

Table of Contents

Filtering

Convergence of Filters

Linear Filtering Problem

Comparison of Optimal and Standard Proposals

Conclusions

Highlights

GENERAL FRAMEWORK

- Standard and optimal filters converge in the large N limit.
- Cost determined by embedded importance sampling problem.

INVERSE PROBLEMS

- Established connection between notions of dimension: efd and τ .
- Linked intrinsic dimensions to importance sampling through ρ .
- Link with absolute continuity in Hilbert space setting.

FILTERING

- Theory from inverse problems determines proposal performance.
- Optimal proposal has lower dimension than standard proposal.
- Effect of dimension and small noise can be studied.