

Performance of the NSSL Experimental Warn-on-Forecast System in Varying Mesoscale Environments

Patrick S. Skinner^{1,2}, Dustan M. Wheatley^{1,2}, Kent H. Knopfmeier^{1,2}, Thomas A. Jones^{1,2}, David C. Dowell³, Therese T. Ladwig³, Curtis R. Alexander³, Ryan A. Sobash⁴, Gerald J. Creager^{1,2}, Corey K. Potvin^{1,2}, and Louis J. Wicker¹

1 - Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma

- 2 NOAA/OAR/National Severe Storms Laboratory
- 3 NOAA/OAR/Earth System Research Laboratory

4 - National Center for Atmospheric Research

International Symposium on Data Assimilation 2016

Vision for Warn-on-Forecast:

Stensrud et al. 2009

NOAA's Warn-on-Forecast project aims to use ensembles of convection-allowing models to produce probabilistic forecasts of short-term, O(1hr), thunderstorm hazards

Motivation:

- EnKF-based assimilation of Doppler radar, and recently satellite data, have reliably
 produced accurate analyses and short-term rotation forecasts for high-impact events from
 the springs of 2013 2016 (e.g. Wheatley et al. 2015; Yussouf et al. 2015; Jones et al.
 2016)
- These forecasts have typically been performed for discrete supercells in strongly favorable environments for tornado development
- Less is known about forecast accuracy for tornadoes with greater storm coverage and marginally favorable environments

Spring 2016: Demonstration of Prototype Warn-on-Forecast System for VORTEX-Southeast Field Project

- High-Resolution Rapid Refresh Ensemble (HRRRE) run at NOAA/ESRL
- Hourly-updated storm-scale
 ensemble for a fixed domain
- NSSL Experimental Warnon-Forecast System for ensembles (NEWS-e)
- 15-min updated storm-scale ensemble with radar and satellite assimilation run for an event-dependent domain
- Forecasts for VORTEX-SE designed to test system performance for marginal tornado environments

Radar locations within NEWS-e grid shown as blue dots with 150-km range rings

System Configuration:

	HRRRE	NEWS-e
Model Version	WRF-ARW v3.6+	WRF-ARW v3.6+
Grid Points	415 × 325 × 50 / 650 × 550 × 50	250 × 250 × 50
Grid Spacing	15 km / 3 km	3 km (1 km in research)
EnKF Cycling	20-40 mem w/ GSI-EnKF every 1 h	36 mem w/ DART every 15 min
Observations	conventional obs only: <i>T</i> , q_v , <i>u</i> , <i>v</i> , and <i>p</i> from rawinsonde, aircraft, surface (land and marine), profiler	Doppler velocity from ~20 WSR-88D sites; MRMS radar reflectivity; cloud-water path
Radiation LW/SW	RRTMG/RRTMG	Dudhia/RRTM or RRTMG/ RRTMG
Microphysics	Thompson (aerosol aware)	Thompson
Cumulus Param.	GF + shallow / none	none
PBL	MYNN	YSU, MYJ, or MYNN
LSM	RUC (Smirnova)	RUC (Smirnova)

Courtesy David Dowell, 2016

System Workflow:

NEWS-e Experiments for VORTEX-SE:

- 23 December 2015:
 - Tornado outbreak across northern Mississippi and southern Tennessee
 - Well-defined risk area ahead of stationary front, with moderate CAPE (>1500 J kg⁻¹) and strong 0 - 1 km shear (>15 m s⁻¹)
- 31 March 2016 (V-SE IOP):
 - Tornadoes in northwestern Alabama and southern Tennessee
 - Localized region of moderate CAPE and strong wind shear, but greater storm coverage
- 29 April 2016 (V-SE IOP):
 - QLCS with mesovortices in northern Alabama but no tornado reports
- 10 May 2016:
 - Tornado outbreak in western Kentucky

Probability of 0-2 km Vertical Vort. > 0.003 s^{-1}

23 December 2015: 2130 Forecast

23 December 2015: 2200 Forecast

23 December 2015: 2230 Forecast

23 December 2015: Poor 2130 Forecast

31 March 2016: 2230 Forecast

31 March 2016: 2230 Forecast

23 December 2015: 2230 Forecast

23 December 2015: 2330 Forecast

Summary:

- A prototype Warn-on-Forecast system has been demonstrated for the Spring of 2016
- Accurate low-level rotation forecasts have been produced across a variety of mesoscale environments; however, both storm and mesoscale challenges in accurately analyzing and forecasting individual thunderstorms remain
- Storm-scale Challenges:
 - Dense storm coverage can lead to unrealistic storm and cold-pool interactions
 - Small or shallow storms limit the number of radar observations assimilated, slowing spin-up
 - May be mitigated by increasing storm and observation resolution (i.e. 1-km horizontal grid spacing) and utilizing multi-moment microphysics
- Mesoscale Challenges:
 - Lack of observations for characterizing mesoscale environment
 - Model error
 - Improved accuracy in forecasting the storm environment will result in similar improvements in storm-scale forecasts

Future Work:

- Need quantitative verification of NEWS-e forecasts:
 - Model climatology of storm properties (i.e. 0-2 km vertical vorticity)
 - Object-based verification of storms
 - Near-storm environment characterization

