Performance of the NSSL Experimental Warn-on-Forecast System in Varying Mesoscale Environments

Patrick S. Skinner1,2, Dustan M. Wheatley1,2, Kent H. Knopfmeier1,2, Thomas A. Jones1,2, David C. Dowell3, Therese T. Ladwig3, Curtis R. Alexander3, Ryan A. Sobash4, Gerald J. Creager1,2, Corey K. Potvin1,2, and Louis J. Wicker1

1 - Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma
2 - NOAA/OAR/National Severe Storms Laboratory
3 - NOAA/OAR/Earth System Research Laboratory
4 - National Center for Atmospheric Research

International Symposium on Data Assimilation 2016
NOAA’s Warn-on-Forecast project aims to use ensembles of convection-allowing models to produce probabilistic forecasts of short-term, $O(1\text{hr})$, thunderstorm hazards
Motivation:

- EnKF-based assimilation of Doppler radar, and recently satellite data, have reliably produced accurate analyses and short-term rotation forecasts for high-impact events from the springs of 2013 - 2016 (e.g. Wheatley et al. 2015; Yussouf et al. 2015; Jones et al. 2016)
- These forecasts have typically been performed for discrete supercells in strongly favorable environments for tornado development

- Less is known about forecast accuracy for tornadoes with greater storm coverage and marginally favorable environments
Spring 2016: Demonstration of Prototype Warn-on-Forecast System for VORTEX-Southeast Field Project

- High-Resolution Rapid Refresh Ensemble (HRRRE) run at NOAA/ESRL
- Hourly-updated storm-scale ensemble for a fixed domain
- NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e)
- 15-min updated storm-scale ensemble with radar and satellite assimilation run for an event-dependent domain
- Forecasts for VORTEX-SE designed to test system performance for marginal tornado environments
System Configuration:

<table>
<thead>
<tr>
<th></th>
<th>HRRRE</th>
<th>NEWS-e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Version</td>
<td>WRF-ARW v3.6+</td>
<td>WRF-ARW v3.6+</td>
</tr>
<tr>
<td>Grid Points</td>
<td>$415 \times 325 \times 50 / 650 \times 550 \times 50$</td>
<td>$250 \times 250 \times 50$</td>
</tr>
<tr>
<td>Grid Spacing</td>
<td>15 km / 3 km</td>
<td>3 km (1 km in research)</td>
</tr>
<tr>
<td>EnKF Cycling</td>
<td>20-40 mem w/ GSI-EnKF every 1 h</td>
<td>36 mem w/ DART every 15 min</td>
</tr>
<tr>
<td>Observations</td>
<td>conventional obs only: $T, q_v, u, v,$ and p from rawinsonde, aircraft, surface (land and marine), profiler</td>
<td>Doppler velocity from ~20 WSR-88D sites; MRMS radar reflectivity; cloud-water path</td>
</tr>
<tr>
<td>Radiation LW/SW</td>
<td>RRTMG/RRTMG</td>
<td>Dudhia/RRTM or RRTMG/RRTMG</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Thompson (aerosol aware)</td>
<td>Thompson</td>
</tr>
<tr>
<td>Cumulus Param.</td>
<td>GF + shallow / none</td>
<td>none</td>
</tr>
<tr>
<td>PBL</td>
<td>MYNN</td>
<td>YSU, MYJ, or MYNN</td>
</tr>
<tr>
<td>LSM</td>
<td>RUC (Smirnova)</td>
<td>RUC (Smirnova)</td>
</tr>
</tbody>
</table>

Courtesy David Dowell, 2016
System Workflow:

NEWS-e Forecasts:

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>180</td>
</tr>
<tr>
<td>1930</td>
<td>90</td>
</tr>
<tr>
<td>2000</td>
<td>180</td>
</tr>
<tr>
<td>2030</td>
<td>90</td>
</tr>
<tr>
<td>2100</td>
<td>180</td>
</tr>
<tr>
<td>2130</td>
<td>90</td>
</tr>
<tr>
<td>2200</td>
<td>180</td>
</tr>
<tr>
<td>2230</td>
<td>90</td>
</tr>
<tr>
<td>2300</td>
<td>180</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Forecast output available ~30 min following initialization
NEWS-e Experiments for VORTEX-SE:

- 23 December 2015:
 - Tornado outbreak across northern Mississippi and southern Tennessee
 - Well-defined risk area ahead of stationary front, with moderate CAPE (>1500 J kg\(^{-1}\)) and strong 0 - 1 km shear (>15 m s\(^{-1}\))
- 31 March 2016 (V-SE IOP):
 - Tornadoes in northwestern Alabama and southern Tennessee
 - Localized region of moderate CAPE and strong wind shear, but greater storm coverage
- 29 April 2016 (V-SE IOP):
 - QLCS with mesovortices in northern Alabama but no tornado reports
- 10 May 2016:
 - Tornado outbreak in western Kentucky
Example of a ‘Good’ Low-Level Rotation Forecast:

Developing Convection (<40 dBZ)

Probability of $\zeta > 0.003 \text{ s}^{-1}$
Example of a ‘Good’ Low-Level Rotation Forecast:

Ensemble Gridpoint 90th percentile $\zeta (s^{-1})$

Probability of $\zeta > 0.003 s^{-1}$
Example of a ‘Good’ Low-Level Rotation Forecast:

Ensemble Gridpoint 90th percentile $\zeta \ (s^{-1})$

High 90th percentile values indicates possibility of intense low-level mesocyclone.
Example of a ‘Good’ Low-Level Rotation Forecast:

- **Ensemble Gridpoint 90th percentile $\zeta (s^{-1})$**
 - High 90th percentile values indicate the possibility of intense low-level mesocyclone.

- **Probability of $\zeta > 0.003 \text{ s}^{-1}$**
 - Moderate (40-50%) probabilities of strong low-level rotation.
23 December 2015: 2130 Forecast

Low probabilities of intense rotation along track of strongest tornado ~40 min in advance

False alarms, storms present but with weak rotation

Early event missed
Rising, but still low, probabilities along track of strongest storm (10-min prior to tornado genesis)

False alarms signals weakening
Identifies high probabilities of intense rotation along ongoing long-track tornado

23 December 2015: 2230 Forecast

Increasing probabilities along track of trailing storm
23 December 2015: Poor 2130 Forecast

Storm-Scale Challenge:
Relatively small storms size and dense coverage

Mesoscale Challenge:
Storms remain behind CAPE axis for majority of forecast

Gray Shading: Observed 40 dBZ Contour
Colored Shading: Individual Member 40 dBZ Contours
31 March 2016: 2230 Forecast

Storm-Scale Challenge:
- Gray Shading: Observed AZ shear objects
- Colored Shading: Individual Member vertical vorticity objects
- First in series of short-lived, tornadic supercell in northern AL

Mesoscale Challenge:
- Axis of enhanced CAPE
- Embedded supercells moving into stable environment
- Cold pool from prior convection

Ensemble Mean 75 hPa MLCAPE (J kg⁻¹)
- Probability Matched Mean - Composite Reflectivity (dBZ)

Init: 2016-03-31, 2230 UTC
Valid: 2016-03-31, 2230 UTC
31 March 2016: 2230 Forecast

Storm-Scale Challenge:

Gray Shading: Observed AZ shear objects
Colored Shading: Individual Member vertical vorticity objects

Mesoscale Challenge:

Axis of enhanced 0-1 SRH

First in series of short-lived, tornadic supercell in northern AL
23 December 2015: 2230 Forecast

Missed storm-scale forecast

Tornado warns, but nontornadic storms
23 December 2015: 2330 Forecast

- Low probabilities of intense rotation for tornado storm, but misses storm decay and intensification of northern storm.

- Tornado-warned, but nontornadic storms.

- Severe, but nontornadic storms.
Summary:

- A prototype Warn-on-Forecast system has been demonstrated for the Spring of 2016

- Accurate low-level rotation forecasts have been produced across a variety of mesoscale environments; however, both storm and mesoscale challenges in accurately analyzing and forecasting individual thunderstorms remain

- Storm-scale Challenges:
 - Dense storm coverage can lead to unrealistic storm and cold-pool interactions
 - Small or shallow storms limit the number of radar observations assimilated, slowing spin-up
 - *May be mitigated by increasing storm and observation resolution (i.e. 1-km horizontal grid spacing) and utilizing multi-moment microphysics*

- Mesoscale Challenges:
 - Lack of observations for characterizing mesoscale environment
 - Model error
 - *Improved accuracy in forecasting the storm environment will result in similar improvements in storm-scale forecasts*
Future Work:

• Need quantitative verification of NEWS-e forecasts:
 • Model climatology of storm properties (i.e. 0-2 km vertical vorticity)
 • Object-based verification of storms
 • Near-storm environment characterization