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Motivation

* Moving towards global high-resolution systems that resolve wide
range of scales. Background may have errors on scales from global to
convective; for ensemble systems simple one-scale spatial localization

approaches might not be optimal

* Observation error statistics unknown and hard to estimate, but
there’s evidence that observations may have spatially correlated
errors

* Both background and observation error covariances influence how
different scales in the analysis are resolved



Simple 1-D problem
e 1D periodic domain, 50 points

* Know true B (blend of simple correlation functions with large and
small scales)

* Know true R
* Fully observed network (H is identity)

* Look at A (analysis spread and the error of analysis ensemble mean)
depending on choices in ensemble assimilation (choosing localization
for B and treatment of R)
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Covariances and spectral variances
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Ensemble estimates of B

* B is sampled from true B by limited size ensemble (40 members) x?;
Xb =1 VNens—1 (xb N xb)
* Localization:
* No localization: B = X2 xbT
 Broad localization: B = Lyq o X?X?T
* Narrow localization: B = Ly o X?X?T
» Scale-dependentlocalization:B =%; _;3%; —13 X/ X' ©L;, ;, where X’ are
scale—seplara;g/ed background perturbations (farge, medium, small scales),
L j,= le/zszz and L; are localization functions for different scales (broad for
large, narrow for small)
(Buehner, Shlyaeva 2015; see J-F Caron talk)
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Ensemble estimates of B (spectral variances)

Spectral space background error variances

No loc

ensemble B
true B

0° 10’ 10
wavenumber
Narrow loc

ensemble B
true B

0° 10’ 102

wavenumber

Based on 5000 realizations.

Broad loc
15 T

ensemble B
true B

10 7

\V]

10° 10’ 10
wavenumber

Scale-dep loc
15 T

true B

10 7

o 1
10° 10’ 10
wavenumber

Color lines for the mean estimate

2

* No localization gives unbiased

estimate of B, but the standard
deviation of the estimate (not
shown) is high

e Localization introduces bias in the

mean estimate of B but reduces
standard deviation of the B

estimate

sl | ® Narrow localization is damping

large scales strongly

* Scale-dependent localization gives

best results compared to single-
scale localizations



Assimilation

* Perturbed observations EnKF

* Observationsalways perturbed with true R
* Avoidinginbreeding(self-exclusion):

xf = x7 + Ki(y; — Hx) )
K; = BipyHT(HB;HT + R)
B(;) is estimated on all members but ith
* Analysis spread A = X*X % very similar
to analysis error covariance of ensemble
mean E = (x% —x")(x® — x)’ for this
ensemble size

* For the following experiments only
analysis error covariance is shown

Ensemble )
forecast step

Ensemble ’
analysis step




Uncorrelated observation errors & true B

Background and observation error
spectral variances
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Diagonal of Kalman gain in spectral space

Observations have uncorrelated errors with the same variance as background errors



Uncorrelated observation errors & true B

Background, observation error and error in the Diagonal of Kalman gain in spectral space
analysis mean spectral variances

12

— . . 1.2

obs more " ' background more B
accurate than 9:6 accurate than obs A
background :

10 -

/

R R R | n L I S S L L S S B N |

10° 101 102 10° 10"
wavenumber

With diagonal R mostly large scales can be corrected by observations



Uncorrelated observation errors & ensemble B

Spectral space analysis error variances
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* No localization: even though B
estimate is unbiased, A estimate is
biased

* Narrow localization (in presence of
large scale error) leads to higher
errors in large scales than other
types of localization

e Best results obtained with scale-
dependent localization

* The benefit of using scale-
dependentlocalization over broad
localization increases with smaller
ensemble size



Correlated observation errors & true B

Background and observation error Diagonal of Kalman gain in spectral space
spectral variances
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Using true correlated R in assimilation
Observations have correlated errors with lengthscale (Ls=2) in between bgnd error lengthscales and same variances



Correlated observation errors & true B

Background, observation error and error Diagonal of Kalman gain in spectral space
in the analysis mean spectral variances
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With non-diagonal R small scales can be significantly corrected by observations



Correlated observation errors & true B

Background and observation error Diagonal of Kalman gain in spectral space
spectral variances
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Using diagonal R (ignoring off-diagonal elements) in assimilation



Correlated observation errors & true B

Background, observation error and error Diagonal of Kalman gain in spectral space
in the analysis mean spectral variances
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Using diagonal R in assimilation (ignoring off-diagonal elements): errors are suboptimal both
for large scales (overfitting obs) and small scales (not using small-scale information in obs)



Correlated observation errors & true B

Background and observation error
spectral variances
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Using inflated diagonal R in assimilation (inflation factor chosen to fit largest scale perfectly)



Correlated observation errors & true B

Background, observation error and error
in the analysis mean spectral variances
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Using inflated diagonal R in assimilation:
good results for large scales, but small scales are suboptimal, worse than without inflation
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Correlated observation errors & ensemble B
(using true R in assimilation)

Spectral space analysis error variances
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Why is analysis error so high when using
correlated R and non-localized B?

Spectral space analysis error variances
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i * Mostly because of the spurious cross-scale
. | correlations (the error is close to optimal

| when removing all cross-scale correlations
\ | with spectral localization)

No lgcalization

| e Using correlated R leads to strong update of
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| small scales

Spec:tral localization B ° Spurious cross-scale correlations lead to

. spurious update of large scales, but
| observations have significant errors in large
\ | scales
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Correlated observation errors & ensemble B
(using diagonal R in assimilation)

Spectral space analysis error variances
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Correlated observation errors & ensemble B
(using inflated diagonal R in assimilation)
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* Narrow localization: high error for
large scales; all the rest: better
errors at large scales than when
using non-inflated errors

* Mean square analysis errors better
at locations dommated by large and

worse at
locations
dominated
by small
scales:
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Conclusions

* Observation errors:

* When observationerrors are correlated, this means they have relativelyless
uncertainty at small scales and therefore smallscales can be corrected by assimilation

* Ignoring correlationsleads to higher analysis errors both for large and small scales

* Usinginflated variances helpsto improve analysisfor large scales, butis even more
suboptimal for smallscales

* Background error localization:

* Narrow localization in presence of some large scale errorsin the background generally
leads to high analysis errors forlarge scales

* Scale-dependentlocalization generally gives better results than single-scale
localization, especially when assimilating observations with correlated errors

* Localization seems to be even more importantwhen assimilating observations with
correlated errors due to uneven distribution of uncertainty across scales

. Theﬁtle_lccl)nclusions may depend on assumption of a fully observed system
with H=



