

Using visible and near-infrared satellite observations for convective-scale data assimilation

Leonhard Scheck^{1,2}, Bernhard Mayer², Martin Weissmann^{1,2}

Hans-Ertl-Center for Weather Research, Data Assimilation Branch
Ludwig-Maximilians-Universität, Munich

Visible / near-infrared satellite observations

- relevant for convective scale DA: high spatial and temporal resolution Next generation geostat. satellites: For 7 of 16 channels λ< 4μm, 0.6μm resolution: 500m (IR: 2km) MTG 10min (full disc) / 2.5min (EU) Himawari, GOES-R: 30sec mode
- provide complementary information on cloud distribution (convection earlier visible than in radar, low clouds clearly detectable), cloud properties (particle size, water phase) and cloud structure
- not used in operational DA: fast forward operators not available (scattering makes radiative transfer complex)

Operator for visible / near-infrared satellite observations

Requirements: The operator must be

- Fast enough for operational DA (less than a minute for full ensemble)
- Sufficiently accurate (mean reflectance error of a few percent)

Earlier version of the operator: Kostka et al. "Observation Operator for Visible and Near-Infrared Satellite Reflectances", J. Atmos.Oceanic Technol., 2014

Strategy for fast radiative transfer method MFASIS

Simplifications

- Simplified Equation:

Method for Fast Satellite Image Synthesis

3D $RT \rightarrow 1D RT$ (plane-parallel, independent columns) Computational effort for one SEVIRI image: CPU-days (3D Monte Carlo) \rightarrow CPU-hours (1D DISORT)

- Simplified vertical structure:

Cloud water and ice can be separated to form two two homogeneous clouds at fixed heights without changing reflectance significantly

- \rightarrow only 4 parameters (optical depth, particle size)
- + 3 angles, albedo \rightarrow 8 parameters per column

Reduction of computational effort

Compute **reflectance look-up table (LUT)** with discrete ordinate method (DISORT) for all parameter combinations \rightarrow effort for looking up reflectances: CPU-minutes

Problem: Table is huge! $O(10GB) \rightarrow$ not suitable for online operator, slow interpolation \rightarrow **compress table** using truncated Fourier series \rightarrow CPU-seconds

Problem: Many Fourier terms would be required to represent these curves Solution: Use scattering angle α instead of azimuthal angle difference ϕ'

0.60

0,57

0.54

0.51

0.48

0.45

0.42 0.39

0.36

0.005

0.004

0.003

0.002

0.001

0.000

-0.001

-0.002

-0.003

-0.004

0.005

Parameter values in the LUT

 C_{kl} , S_{kl} stored in LUTs with dims. α , τ_w , r_w , τ_i , r_i , A

Parameter values are chosen such that linear interpolation error for reflectance < 0.005

Adaptive α -grid: high resolution (2°) is required only around cloud bow \rightarrow LUT factor 3 smaller

Performance

DISORT (16 streams): 2.3 x 10⁻² sec/column MFASIS (21MB table): 2.5 x 10⁻⁶ sec/column (on Xeon E5-2650 with 20MB level 3 cache, for 51 level COSMO data)

MFASIS: Part of the table required for one SEVIRI image fits into cache \rightarrow high performance

Uncompressed LUT for R(θ, θ_0, ϕ'): 7.5GB

- \rightarrow cache misses in almost every pixel \rightarrow slower!
- → Compression increases performance

parameter	values
A	0.0, 0.5, 1.0
$ au_w$	0, 0.25, 0.5, 1, 2, 4, 8, 16, 25, 50, 100,
	300, 1000
$ au_i$	0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 25,
	50, 100, 300
r_w [μ m]	2.5, 5, 10, 25 Size: 21MB
<i>r_i</i> [µm]	20, 40, 60
α [°]	40, 45, 50, 60, 70, 80, 90, 99, 109, 119,
	129, 133, 135, 137, 139, 141, 143, 145,
	147, 149, 153, 159, 165, 171

Accuracy of synthetic satellite images

Error of MFASIS (8 parameters/pixel) with respect to DISORT (full profiles available) Period: June 12th – 28th 2012, Model data: Operational COSMO-DE forecasts

Success rate S_x : Success means relative error < x or absolute error < x/5

 \rightarrow Relative error < SEVIRI calibration error (~4%) for almost all pixels

L. Scheck, P. Frèrebeau, R. Buras-Schnell, B. Mayer: *"A fast radiative transfer method for the simulation of visible satellite imagery"* JQSRT, vol. 175, p. 54-67, 2016

Comparison with RTTOV-DOM

(with J. Hocking, R. Saunders)

RTTOV-DOM: Implementation of DISORT in development at MetOffice / NWP-SAF MFASIS & RTTOV-DOM were compared during NWP-SAF visiting scientist mission

See http://www.nwpsaf.eu/vs_reports/nwpsaf-mo-vs-054.pdf

Results:

- Reflectances for clouds agree well!
- Clear sky contributions problems:
 - -In MFASIS only a constant profile of water vapour is taken into account (affects the 0.8µm channel)
- RTTOV-DOM: no multiple cloud clear-sky scattering processes
 → negative reflectance bias
- Stochastic and deterministic cloud overlap schemes lead to similar results, a more efficient deterministic scheme was implemented that may also be useful for infrared channels

Synthetic vs. real satellite images

Systematic differences indicate deficiencies in model and/or operator and should be removed by model/operator improvements or tuning to avoid problems in the DA.

Important tuning parameters: particle radii, subgrid cloud cover and water content Deficiencies that cannot be "tuned away": imperfect albedo, missing 3D effects...

3D effects not accounted for in 1D radiative transfer

3D effects not accounted for in 1D radiative transfer

3D effects not accounted for in 1D radiative transfer

Cheap 3D effects 1: Cloud top inclination

Algorithm

- Fit plane to optical depth 1 surface
- Compute sun/sat. angles relative to plane
- Look up reflectance for these angles
- Correct clear sky contribution

Results

- Much more structure visible useful e.g. to distinguish convective from stratiform clouds
- Reflectance histogram improved, in particular for large SZA

Cheap 3D effects 1: Cloud top inclination

Algorithm (computationally cheap!)

- Fit plane to optical depth 1 surface
- Compute sun/sat. angles relative to plane
- Look up reflectance for these angles
- Correct clear sky contribution

Results

- Much more structure visible useful e.g. to distinguish convective from stratiform clouds
- Reflectance histogram improved, in particular for large SZA

Cheap 3D effects 2: Cloud shadows on the ground

Example: MODIS image + model equivalent for 150m resolution ICON run from HD(CP)² (see Heinze et al. (2016) "Large-eddy simulations over Germany using ICON", QJRMS, submitted)

- Important for deep convection and broken cloud fields, in particular for channels with high surface albedo (e.g. 0.8µm)
- Shadow position can be determined by computing optical depth in columns tilted towards sun (same effort as for columns tilted towards satellite)
- Shadow brightness depends on direct (easy) and diffuse (complicated) radiance, parameterization may be possible (work in progress)...

Conclusions & Outlook

- We developed an operator for visible & near-infrared satellite images that is sufficiently fast and accurate for convective scale DA
- High performance due to MFASIS, a RT method based on a compressed LUT
- Comparison to RTTOV-DOM: Cloud results are in good agreement, some problems related to clear sky should be corrected, stochastic and deterministic cloud overlap schemes lead to similar results
- The most important 3D effects can be taken into account in a computationally efficient way (work in progress) → reduction of systematic error, synthetic images contain more structure and thus potentially useful information
- Next step: New assimilation experiments with KENDA (DWD)...

First assimilation results

Assimilation of conventional and/or SEVIRI obs. in COSMO/KENDA

Setup:

40 member LETKF 1h assimilation interval 600nm observations Observation error 0.2 Superobbing (radius 3 pixels) Horiz. localization 100km No vertical localization

Assimilation of SEVIRI observations: lower reflectance RMSE and bias

Independent GPS humidity observations: reduced error

First assimilation results

Assimilation of conventional and/or SEVIRI obs. in COSMO/KENDA

Setup:

40 member LETKF 1h assimilation interval 600nm observations Observation error 0.2 Superobbing (radius 3 pixels) Horiz. localization 100km No vertical localization

Assimilation of SEVIRI observations: lower reflectance RMSE and bias

Independent GPS humidity observations: reduced error

Cloud overlap schemes

Partially cloudy cells (subgrid clouds) \rightarrow cloud overlap assumption required Most common: random-maximum overlap. We compared different implementations:

- Mean of many stochastic realizations \approx deterministic value (bias O(10⁻³))
- Spread is typically a few 10⁻², affects most pixels. Some outliers differ by up to 0.2.
- Fixed stream number schemes are computationally cheaper (maybe also for IR)

Error decomposition

What is the contribution of the various simplifications to the total error?

 ΔR_{rad} and ΔR_{int} are the most important and compensate each other partially. Higher accuracy (e.g. for 1.6µm) requires better way to compute effective radius.