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Brightness Temperature Assimilation at Convective Scales 

• Assimilation experiments performed using the WRF model, the DART 

ensemble data assimilation system, and the Community Radiative 

Transfer Model (CRTM)

• Synthetic satellite and radar observations created using output from a 

2-km resolution truth simulation of a severe thunderstorm event

• Assimilation experiments were performed using a 50-member 

ensemble containing 4-km resolution and 52 vertical levels

• GOES-R Advanced Baseline Imager and Doppler radar observations 

were assimilated every 5 minutes during a 2-hour assimilation period

• Clear and cloudy sky 6.95 mm brightness temperatures sensitive 

to clouds and water vapor in the middle and upper troposphere

• Provides a spatially continuous 2-dimensional view of cloud and 

water vapor fields across entire model domain



WSR-88D Radar Observations

• Simulated WSR-88D radar reflectivity and radial velocity obs 

were produced for the Wichita, Topeka, and Kansas City radars

• Provide dense 3D coverage where there are large cloud particles

• VCP-21 scanning strategy used with 9 elevation angles

• Clear-sky observations (< 10 dBZ) were not assimilated
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Clear Sky Bias Correction During 2-Hour Assimilation Period

• Large negative brightness 

temperature bias due to the 

use of different initialization 

datasets in the truth (NAM) 

and assimilation (GFS) 

experiments

• Added 3.1 K to the clear 

sky observations

• Cloudy observations were 

not bias-corrected 

• Bias and RMSE greatly 

reduced in clear areas of 

the model domain

• Cloudy-sky statistics were 

also slightly improved
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Horizontal Localization During 2-Hour Assimilation Period

Clear-Sky RMSE

Cloudy-Sky Bias

Cloudy-Sky RMSE

Clear-Sky Bias

• Tested impact of horiz. 

covariance localization 

radius when assimilating 

satellite Tb observations

• 28 km radius resulted in 

the smallest errors by end 

of assimilation period

• 20 km radius led to much 

larger analysis increments, 

but largest errors; unable to 

remove clouds from clear 

areas of domain

• 36 km radius degraded 

cloud analysis and caused 

erroneous thunderstorms



6.95 mm Tb Analysis Errors During Assimilation Period

• Control – no assimilation

• SAT – satellite only

• RAD – radar only

• SATRAD – both satellite 

and radar observations
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• Satellite observations had 

large positive impact on the 

cloud and moisture fields

• Radar data assimilation 

led to larger errors due to 

lower sensitivity to 

moisture and poor domain 

coverage

• Best results obtained 

during the SATRAD case



Final Analysis – 500 hPa Water Vapor Mixing Ratio

• Truth simulation had small 

mixing ratios everywhere 

except along the cold front 

and small convective cells

• Control case was too dry 

along the cold front and too 

moist to the northwest and 

southeast of the front

• Satellite observations 

reduced dry bias along the 

front and removed the wet 

bias further to the east

• Radar data also reduced 

dry bias along the western 

half of the front, but not to 

the east
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Final Analysis – 500 hPa Total Cloud Mixing Ratio
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• Truth simulation contained 

large cloud mixing ratios 

along the cold front

• Control case did not have 

enough cloud condensate 

within this region

• Cloud errors were smaller 

when satellite observations 

were assimilated

• Radar data also lowered 

bias along the western half 

of the cold front

• Smallest cloud errors were 

found during the SATRAD 

case when both observation 

types were assimilated



Simulated Radar Reflectivity During 1-Hour Forecast Period

• Truth simulation had a long 

line of thunderstorms

• Initial thunderstorm structure 

more accurate when satellite 

and radar observations were 

assimilated

• Thunderstorms maintained 

organization longer during the 

SATRAD case

• Best structure was obtained 

when both satellite and radar 

observations were assimilated

• Satellites can fill in data gaps 

even within data rich locations 

such as the central United 

States
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Forecast 35 dBZ Composite Radar Reflectivity Probabilities

• 35 dBZ contour from truth 

simulation shown by black line

• Spatial coverage is too small 

during the Control case

• Assimilation of radar obs led 

to some improvements

• Much larger positive impact 

when satellite observations 

were assimilated, with better 

coverage across eastern 

Kansas and northern Missouri

• Results show that radar and 

satellite observations provide 

complementary information 

about the atmospheric state
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