Assimilation of Satellite Infrared Brightness Temperatures and Doppler Radar Observations in a High-Resolution OSSE

Jason Otkin and Becky Cintineo

University of Wisconsin-Madison, Cooperative Institute for Meteorological Satellite Studies

Thomas Jones

University of Oklahoma, Cooperative Institute for Mesoscale Meteorological Studies

Steve Koch and Lou Wicker

National Severe Storms Laboratory

Dave Stensrud

Pennsylvania State University

Funding: U.S. Weather Research Program within NOAA/OAR Office of Weather and Air Quality under Grant NA10NES4400013

The assimilation experiments were performed on the NOAA/NESDIS/STAR "S4" supercomputer at the University of Wisconsin–Madison

Brightness Temperature Assimilation at Convective Scales

 Assimilation experiments performed using the WRF model, the DART ensemble data assimilation system, and the Community Radiative Transfer Model (CRTM)

 Synthetic satellite and radar observations created using output from a 2-km resolution truth simulation of a severe thunderstorm event

 Assimilation experiments were performed using a 50-member ensemble containing 4-km resolution and 52 vertical levels

• GOES-R Advanced Baseline Imager and Doppler radar observations were assimilated every 5 minutes during a 2-hour assimilation period

- Clear and cloudy sky 6.95 μ m brightness temperatures sensitive to clouds and water vapor in the middle and upper troposphere
- Provides a spatially continuous 2-dimensional view of cloud and water vapor fields across entire model domain

WSR-88D Radar Observations

• Simulated WSR-88D radar reflectivity and radial velocity obs were produced for the Wichita, Topeka, and Kansas City radars

- Provide dense 3D coverage where there are large cloud particles
- VCP-21 scanning strategy used with 9 elevation angles
- Clear-sky observations (< 10 dBZ) were not assimilated

Clear Sky Bias Correction During 2-Hour Assimilation Period

Horizontal Localization During 2-Hour Assimilation Period

• Tested impact of horiz. covariance localization radius when assimilating satellite T_b observations

- 28 km radius resulted in the smallest errors by end of assimilation period
- 20 km radius led to much larger analysis increments, but largest errors; unable to remove clouds from clear areas of domain
- 36 km radius degraded cloud analysis and caused erroneous thunderstorms

6.95 μ m T_b Analysis Errors During Assimilation Period

- Control no assimilation
- SAT satellite only
- RAD radar only
- SATRAD both satellite and radar observations

• Satellite observations had large positive impact on the cloud and moisture fields

- Radar data assimilation led to larger errors due to lower sensitivity to moisture and poor domain coverage
- Best results obtained during the SATRAD case

Final Analysis – 500 hPa Water Vapor Mixing Ratio

 Truth simulation had small mixing ratios everywhere except along the cold front and small convective cells

• Control case was too dry along the cold front and too moist to the northwest and southeast of the front

• Satellite observations reduced dry bias along the front and removed the wet bias further to the east

• Radar data also reduced dry bias along the western half of the front, but not to the east

Final Analysis – 500 hPa Total Cloud Mixing Ratio

• Truth simulation contained large cloud mixing ratios along the cold front

 Control case did not have enough cloud condensate within this region

• Cloud errors were smaller when satellite observations were assimilated

 Radar data also lowered bias along the western half of the cold front

• Smallest cloud errors were found during the SATRAD case when both observation types were assimilated

Simulated Radar Reflectivity During 1-Hour Forecast Period

- Truth simulation had a long line of thunderstorms
- Initial thunderstorm structure more accurate when satellite and radar observations were assimilated
- Thunderstorms maintained organization longer during the SATRAD case
- Best structure was obtained when both satellite and radar observations were assimilated
- Satellites can fill in data gaps even within data rich locations such as the central United States

Forecast 35 dBZ Composite Radar Reflectivity Probabilities

- 35 dBZ contour from truth simulation shown by black line
- Spatial coverage is too small during the Control case
- Assimilation of radar obs led to some improvements
- Much larger positive impact when satellite observations were assimilated, with better coverage across eastern Kansas and northern Missouri
- Results show that radar and satellite observations provide complementary information about the atmospheric state

References

Cintineo, R., J. A. Otkin, T. A. Jones, S. Koch, L. Wicker, and D. Stensrud, 2015: Assimilation of GOES-R ABI satellite and WSR-88D radar observations during a convection-resolving OSSE. Accepted for publication in *Mon. Wea. Rev.*

Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2014: Forecast evaluation of an Observing System Simulation Experiment assimilating both radar and satellite data. *Mon. Wea. Rev.*, **142**, 107-124.

Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2013: Assimilation of simulated GOES-R satellite radiances and WSR-88D Doppler radar reflectivity and velocity using an Observing System Simulation Experiment. *Mon. Wea. Rev.*, **141**, 3273-3299.

Otkin, J. A., 2012: Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. *J. Geophys. Res.*, **117**, D19203, doi:10.1029/2012JD017568.

Otkin, J. A., 2012: Assessing the impact of the covariance localization radius when assimilating infrared brightness temperature observations using an ensemble Kalman filter. *Mon. Wea. Rev.*, **140**, 543-561.

Otkin, J. A., 2010: Clear and cloudy-sky infrared brightness temperature assimilation using an ensemble Kalman filter. *J. Geophys Res.*, **115**, D19207, doi:10.1029/2009JD013759.