# Towards the assimilation of all-sky infrared radiances of Himawari-8

# Kozo Okamoto<sup>1,2</sup>

#### H. Ishimoto<sup>1</sup>, M. Kunii<sup>1,2</sup>, M. Otsuka<sup>1,2</sup>, S. Yokota<sup>1</sup>, H. Seko<sup>1,2</sup>, and Y. Sawada<sup>2</sup>



1: JMA/MRI, 2: RIKEN/AICS



ISDA2016, Reading, UK 18-22 July, 2016

## Outline



- 1. Background
- 2. OB-FG statistics
- 3. Observation error
- 4. Preliminary assimilation experiments
- 5. Summary and plans

# 1. Background



- Cloud/rain-affected satellite data have been underused especially for infrared (IR) radiances
  - Complicated cloud/rain process in NWP and RT models, Non-linearity, Non-Gaussianity,,,
- IR radiances
  - Mostly assimilated in clear-sky condition, and in overcast conditions at some operational centers
    - Issues :: miss meteorologically important info, suffer from unexpected cloud contamination, cause dry bias,,,
  - All-sky MW radiance assimilation has been successfully implemented
  - Provide higher temporal/horizontal/vertical information, despite limited availability, compared with MW radiances
- Objective : Improve T/Q/W analysis and forecast by effectively assimilating all-sky IR radiance
  - Especially for Himawari-8

# Himawari-8/AHI



|     | Himawari-8,9/AHI |                    |                       |  |  |  |
|-----|------------------|--------------------|-----------------------|--|--|--|
|     | Band             | Wavelength<br>[µm] | Spatial<br>Resolution |  |  |  |
| )   | 1                | 0.43 - 0.48        | 1km                   |  |  |  |
| )   | 2                | 0.50 - 0.52        | 1km                   |  |  |  |
| 3   | 3                | 0.63 - 0.66        | 0.5km                 |  |  |  |
|     | 4                | 0.85 - 0.87        | 1km                   |  |  |  |
| for | 5                | 1.60 - 1.62        | 2km                   |  |  |  |
|     | 6                | 2.25 - 2.27        | 2km                   |  |  |  |
| pan | 7                | 3.74 - 3.96        | 2km                   |  |  |  |
|     | 8                | 6.06 - 6.43        | 2km                   |  |  |  |
|     | 9                | 6.89 - 7.01        | 2km                   |  |  |  |
|     | 10               | 7.26 - 7.43        | 2km                   |  |  |  |
|     | 11               | 8.44 - 8.76        | 2km                   |  |  |  |
|     | 12               | 9.54 - 9.72        | 2km                   |  |  |  |
|     | 13               | 10.3 - 10.6        | 2km                   |  |  |  |
|     | 14               | 11.1- 11.3         | 2km                   |  |  |  |
|     | 15               | 122-125            | 2km                   |  |  |  |

13.2 - 13.4

2km

16

- Launched in Oct. 7 2014
  - Start the operation in Jul. 7, 2015
  - Geo-sat after MTSAT2
  - Himawari-9 to be launched in 2016
- Advanced Himawari Imager (AHI)
  - 16 bands, including 3 VIS, 3 NIR, 3 humidiy, 3 window, and 1 CO2
  - 1.0/0.5 km for VIS and NIR, 2.0 km for IR and NIR
  - 10 min. for full disk, 2.5 min. for Japan regions and target regions

## 2. OB-FG statistics



#### Models



#### JMA-NHM (Non-hydrostatic model)

- Operational meso-scale model of JMA since 2004 (Saito et al. 2006)
- Cloud microphysics
  - Explicit three-ice bulk scheme based on Lin et al. (1983)

|             | Cloud water   | Cloud ice | Rain        | Snow | Graupel |
|-------------|---------------|-----------|-------------|------|---------|
| Mix.ratio   | Qc            | Qi        | Qr          | Qs   | Qg      |
| Num.denstiy |               | Ni        |             |      |         |
| DSD         | Mono-disperse |           | Exponential |      |         |

5km, L50, 461x481 grids, Japan region

#### RTTOV v11.3

- Cloud scattering (Matricaldi 2005) : scaling approximation (Fu et al. 1999), cloud fraction by stream method
- Input: 6-h forecast from JMA-NHM
  - □ Profiles of temperature, humidity, Liquid cloud, ice cloud, cloud fraction
  - Ice cloud : the sum of ice, snow and graupel
  - Cloud fraction is estimated by Tompkins and Janiskova (2004)

## Comparison of AHI obs and simulation



- Super-ob (2x2 pixels average)
  - For better representation of 5km model
- Remove highly inhomogeneous scenes (inhomogeneity-QC)
  - Standard deviation (SD) in super-ob (SDso) at band 13 > 2.0 K
  - → Justify making IR super-ob and mitigate difficulty in partial cloud effect in RT calculation
  - SDso is estimated from original pixels inside super-ob
- Thinned in 20 km box (4 model grids)
- The comparison was made for four different meteorological conditions
  - Result in a stationary rain band case is only shown : 00 UTC Sep 7~ 18 UTC Sep 9, 2015, every 6-h

## OB and FG at band13 (10.4 µm)



- Insufficient simulation for low BT
- CRTM can generate more low BT but occasionally excessive



#### OB vs FG, OB vs OB-FG with RTTOV



# Cloud effect and QC

- A parameter to represent cloud effect on radiance : Ca
  - Ca = 0.5\*(|FG-FGclr|+|OB-FGclr|), FGclr=clear-sky FG
  - OB-FG variability monotonically increases with Ca
  - → predict (cloud-dependent) OB-FG SD using Ca
  - Details in Okamoto et. al. (2014, QJRMS)
- 2 additional QCs
  - Too low TB (OB<230K)</p>
  - Large OB-FG with Clouddependent criteria



# Normalized OB-FG PDF





## 3. Observation error



## Observation error statistics for all-sky rad



- Estimate obs error at humidity bands based on Desroziers diagnostics
- Obs error SD = 1.7 K (band8), 1.9 K (9) and 2.5 K (10)
- Distance at corr<0.2 = 150 km (bands 9 & 10), 250km (8)</p>
- Strong spectral correlation



#### Comparison of cloudy and clear-sky rad



Separate cloudy (Ca>0.5) and clear-sky (Ca<0.5)</p>

Larger SD and spatial/spectral correlation in cloudy conditions

- Obs error SD= 0.4,0.4,0.4(clear-sky) → 1.9,2.3,3.0(cloudy) at bands 8,9,10
- Dist(corr<0.2)= 60 km (clear-sky) → 180 km (cloudy) at band 9</p>
- Corr(band8-10)= 0.03 (clear-sky)  $\rightarrow$  0.60 (cloudy)

Consistent to all-sky MW 85GHz statistics (Bormann et al. 2011)



# **Cloud-dependent obs error**





- **r** =  $r_0$  for Ca<Ca<sub>0</sub>
  - $r_1$  for Ca>Ca<sub>1</sub>
  - $r_0 + (r_1 r_0)^* (Ca_1 Ca) / (Ca_1 Ca_0)$  for others
  - r<sub>0</sub>, r<sub>1</sub>: min,max error, estimated from Desroziers diagnostics → r<sub>0</sub>=0.4K, r<sub>1</sub>=6.3K
- Non-diagonal component will be included in future





#### 4. Preliminary assimilation experiments



# **Experiment** Design

- NHM-Letkf (Kunii 2014)
  - 15km, 50 members, 273x221 grids
  - 6-h cycle with 1-h slot to ingest observations
  - Inflation : RTPS (relaxation-to-prior spread)
  - Localization: 200 km and 0.2 InP coordinates
- Period: 06 UTC 4 ~ 18 UTC 10 Sep, 2015
- Observations
  - CNTL: conventional data
    - RAOB, SYNOP, ship, aircraft, Wind Profiler, Doppler Radar, GPS ground, Atmospheric Motion Vector from MTSAT-2
  - TEST: CNTL + all-sky TB of AHI
- AHI all-sky TB
  - Super-ob (6x6 pixels)
  - Band 9 (6.9µm), Thinning 150km
  - Cloud dependent obs error (0.4~6.3K)
  - 3 QC, over sea
  - No bias correction (future work!)





# Single Obs Experiment (1/2)



- OB=231.712, FG=248.018 at 142E, 24N ← FG underestimates cloud
- AN(w/oAHI)=247.155, AN(wAHI)=240.091
- Rad assimilation increases humidity and snow at 7~9 km around obs



# Single Obs Experiment (2/2)



- OB=249.288, FG=243.820 at 138E,26N ← FG overestimate cloud
- AN(w/oAHI)=243.860, AN(wAHI)=251.116
- Rad assimilation reduces humidity and snow



FG & AN difference along the crosssection at 24 NC

# Ratio of FG RMSE against AHI rad



- RMSE<sub>TEST</sub>/RMSE<sub>CNTL</sub> < 1.0 : better fitting of FG</p>
- → Improve FG fitting to rad obs at not only band 9 but other bands Time sequence of SDtest/SDcntl



# FG RMSE against RH and wind



- 7 -10 SeptemberImprovement in V200 and RH500
- Degradation in RH850 and V in mid Troposphere



#### Verification of Rain and Psea forecast



 30-h forecast from 12 UTC 8 Sep, 2015

- rain[ (mm/3h),Psea (hPa)
- TEST (AHI with cloud-dep obs err) better predicts rainband
- But the result is not robust





# 5. Summary and plans



- Models (JMA-NHM and/or RTTOV) significantly underestimate low BT, resulting in negative OB-FG bias.
- Develop 3 QCs to alleviate the discrepancy btw model and obs
  - Inhomogeneity QC, low BT QC, and cloud-dependent gross error QC
- Estimate obs error and its spatial/spectral correlation
  - Determine thinning distance and cloud-dependent obs error
  - Cloudy obs error (variance and correlation) is larger than clear-sky one
- Preliminary assimilation experiments
  - Assimilate rad at only band (at the moment)
  - Agreement of FG to obs is better for rad at IR bands, but mixed for RAOB and aircraft.
  - Better precipitation forecast can be found, but the result is not robust at the moment
- Plans
  - Develop bias correction
  - Redesign assimilation setup: longer period, cycle period, resolution,,,
  - Compare impacts of clear-sky radiance assimilation
  - Apply for the operational global data assimilation system (4D-Var)



## **OB** and FG distribution





#### 30-h forecast from 12 UTC 8 Sep, 2015



