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Nonlinear Ensemble Transform Filter & Smoother 

Overview 

!  Study new Nonlinear Ensemble Transform Filter – NETF 
(Tödter & Ahrens, MWR, 2015)  

!  Extend NETF for smoothing 

!  Test filter and smoother in realistic high-dimensional 
idealized ocean data assimilation experiments 



Nonlinear Ensemble Transform Filter & Smoother 

•  represent state and its error by ensemble      of m states 

•  Forecast: 
•  Integrate ensemble with numerical model 

•  Analysis: 
•  update ensemble mean 

•  update ensemble perturbations 

(both can be combined in a single step) 

•  Ensemble Kalman filters & NETF: Different definitions of 

•  weight vector      

•  Transform matrix   

Ensemble filters – ensemble Kalman filters & NETF 
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Nonlinear Ensemble Transform Filter & Smoother 

•  Ensemble Kalman:  
•  Transformation according to KF equations 

•  NETF (Tödter & Ahrens, MWR, 2015) 
!  Mean update from Particle Filter weights: for all particles i 

    
 

Nonlinear ensemble transform filter - NETF 

!  Ensemble update  
•  Transform ensemble to fulfill analysis covariance 

(like KF, but not assuming Gaussianity) 
•  Derivation gives 

(    : mean-preserving random matrix; useful for stability) 
(Almost same formulation: Xiong et al., Tellus, 2006) 
⇤
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Nonlinear Ensemble Transform Filter & Smoother 

•  Smoother: Update past ensemble with future observations 
•  Rewrite ensemble update as 

•  Filter: 

Ensemble Smoothers – ETKS & NETS 

Xa
k|k = Xf

k|k�1Ŵk

analysis time Observations 
used up to time 

•  Smoother at time 

!  works likewise for ETKS and NETS 
!  also possible for localized filters 

Xa
i|k = Xf

i|k�1Ŵk

i < k

See, e.g., Nerger, Schulte & Bunse-Gerstner, QJRMS 140 (2014) 2249–2259 



Nonlinear Ensemble Transform Filter & Smoother 

•  Performance for small model (Lorenz-96) 
•  In Tödter & Ahrens (MWR, 2015) 

•  NETF beats ETKF for m=20 and larger 

Performance of NETF – Lorenz-96 

How do NETF and NETS perform 
in a more realistic case? 

update mechanism seems to be more beneficial than its
stochastic counterpart.
The next experiment concerns the L2005 model,

which exhibits a distinct spatial structure compared to
the L96 model. Figure 5 shows the analysis error with
respect to ensemble size. Concerning the relative per-
formances of the KF-based filters, the general structure
is very similar to the L96 experiment. The most re-
markable, seemingly counterintuitive difference is that
here the NLEAF1 performs better than the NLEAF2,
except whenm5 100. Lei and Bickel (2011) do not show
the NLEAF2 for their larger-dimensional experiments,
hence, we cannot directly compare these findings to
their results. A possible explanation could be revealed
by the update formalism of theNLEAF2 [Lei andBickel
2011, their Eq. (3)], which requires the estimation of an
individual analysis covariance matrix for each ensemble
member, based on each of the m perturbed obser-
vations. These low-rank approximations of the d 3 d
covariance matrix with m members are subject to sam-
pling error, and it seems that the stochastic errors of the
perturbed observations amplify the errors in the

estimation of the covariances, which may lead to these
unexpected results in certain larger-dimensional cases.
This hypothesis is supported by the fact that in the low-
dimensional L63 experiments the NLEAF2 consistently
outperformed the NLEAF1. Additionally, in the L2005
system, spatial correlations are more important than in
the L96 system, hence a reliable estimation of the co-
variances is of greater relevance here. The NETF, which
also focusses on the second-order statistics, does not
suffer from this issue. Again, it exhibits the smallest
analysis error form$ 20. We conclude that, particularly
in larger-dimensional scenarios, the benefits of the de-
terministic update mechanism of the NETF become
more apparent.
To strengthen these findings, Table 3 gives an overview

of more diagnostic measures for m 2 f10, 25, 50, 100g.
As in the L63 case, the comparison of RMSE and spread
as well as of innovation variance and expected innovation
variance indicate that, thanks to the inflation procedure,
the filters behave reasonably well in both state and ob-
servation space. Except for m5 10, all scores reveal that
the NETF performs best. The CRIGN shows that in

FIG. 4. Result of the L96 experiment with double exponential observation errors with
s2
obs 5 1. Shown is the average RMSE for the six ensemble filters against ensemble size, i.e.,

NETF (black line), ETKF (black, dotted), ETKFrot (black, dashed), EnKF (gray line),
NLEAF1 (gray, dotted), and NLEAF2 (gray, dashed).

FIG. 5. As in Fig. 4, but for the L2005 experiment with double exponential observation errors
with s2

obs 5 1.
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Nonlinear Ensemble Transform Filter & Smoother 

Assimilation into NEMO 

European ocean circulation model 

 

Model configuration 

•  box-configuration SEABASS 

•  ¼o resolution  

•  121x81 grid points, 11 layers 
(state vector ~300,000) 

•  wind-driven double gyre 
(a nonlinear jet and eddies) 

•  medium size SANGOMA  
benchmark 
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www.data-assimilation.net 



Nonlinear Ensemble Transform Filter & Smoother 

PDAF: A tool for data assimilation 

PDAF - Parallel Data Assimilation Framework 
"  a program library for data assimilation 
"  provide support for ensemble forecasts 
"  provide fully-implemented filter and smoother algorithms 

(LETKF, LSEIK, LESTKF, …) 
"  easily useable with (probably) any numerical model 

(applied with NEMO, MITgcm, FESOM, MPI-ESM, HBM) 
"  makes good use of supercomputers  
"  first public release in 2004; continued development 

Open source:  
Code and documentation available at  

http://pdaf.awi.de 

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 



Nonlinear Ensemble Transform Filter & Smoother 

Online coupling: Minimal changes to NEMO 

Add to mynode (lin_mpp.F90) just before init of myrank 
 #ifdef key_USE_PDAF
   CALL init_parallel_pdaf(0, 1, mpi_comm_opa)
 #endif

Add to nemo_init (nemogcm.F90) at end of routine 
 #ifdef key_USE_PDAF     
   CALL init_pdaf()
 #endif

Add to stp (step.F90) at end of routine 
 #ifdef key_USE_PDAF
   CALL assimilate_pdaf()
 #endif

Modify dyn_nxt (dynnxt.F90)  
 #ifdef key_USE_PDAF
   IF((neuler==0 .AND. kt==nit000).OR.assimilate)
 #else

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

init_parallel_pdaf 

Do i=1, nsteps 

init_pdaf 

assimilate_pdaf 



Nonlinear Ensemble Transform Filter & Smoother 

Observations and Assimilation Configuration 

Observations 

•  Simulated satellite sea surface 
height SSH (Envisat & Jason-1 
tracks), 5cm error 

•  Temperature profiles on 3ox3o grid, 
surface to 2000m, 0.3oC error 

Data Assimilation 

•  Ensemble size 120 

•  ETKF and LETKF 

•  Localization: weights on matrix R-1 
(Gaspari/Cohn’99 function, 2.5o radius) 
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FIG. 3. Observation characteristics on day 8: (a) The horizontal domain is shown, together with the Argo

profiler locations (crosses) and the synthetic SSH observations (colored) on the Envisat tracks (thin lines). (b)

The vertical grid of 11 layers is visualized, and embedded are the artificial Argo temperature profiles along the

� = �50� longitude line. Note that at � = 44�, the true temperature field is zero due to the lateral boundary

conditions.
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FIG. 2. Observation characteristics on day 8: (a) The horizontal domain is shown, together with the Argo

profiler locations (crosses) and the synthetic SSH observations (colored) on the Envisat tracks (thin lines). (b)

The vertical grid of 11 layers is visualized, and embedded are the artificial Argo temperature profiles (46 values

each) along the � = �50� longitude line. At � = 44�, the true temperature field is zero due to the lateral

boundary conditions.
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FIG. 3. Observation characteristics on day 8: (a) The horizontal domain is shown, together with the Argo

profiler locations (crosses) and the synthetic SSH observations (colored) on the Envisat tracks (thin lines). (b)

The vertical grid of 11 layers is visualized, and embedded are the artificial Argo temperature profiles along the

� = �50� longitude line. Note that at � = 44�, the true temperature field is zero due to the lateral boundary

conditions.
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Nonlinear Ensemble Transform Filter & Smoother 

Application of LETKF 

True sea surface height at 1st analysis time
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Initial guess of sea surface height 
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Nonlinear Ensemble Transform Filter & Smoother 

Application of LETKF (2) 

Estimated SSH at last analysis time
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True sea surface height at last analysis time
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Final SSH without assimilation True sea surface height at last analysis time
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Nonlinear Ensemble Transform Filter & Smoother 

•  RMS errors reduced to 10% (velocities to 20%) of initial error 
•  Slower convergence for NETF, but to same error level as LETKF 
•  CRPS (Continuous Rank Probability Score) shows similar behavior 

Filter performances in NEMO 
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FIG. 9. Comparison of NETF and LETKF in terms of RMSE (black/gray) and CRPS (red/orange). The lines

represent the field-averaged relative RMSE and CRPS, respectively, for all prognostic variables, i.e., (a) SSH ,

(b) T , (c) U and (d) V , which are defined in Sec. 5.b. The legend in (b) is valid for all panels.
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Tödter, Kirchgessner, Nerger & Ahrens, MWR 144 (2016) 409 – 427 

SSH: Relative error reduction T: Relative error reduction 



Nonlinear Ensemble Transform Filter & Smoother 

•  Smoother reduces filter errors by ~10% 
•  Can be useful as smoothing is cheap to compute 

Applying the smoother 
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Roughness 

Ro =

Z ✓
dRMSE

dt

◆2

dt

•  Roughness of estimated trajectory is strongly reduced (smoothed) 



Nonlinear Ensemble Transform Filter & Smoother 

•  Consider relative improvement 

Different smoothing impact 
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•  Similar behavior for ssh (sea surface height) 
•  Distinct for T 

!  Effect of distinct update schemes (NETF uses observation values 
for both state and ensemble update) 

optimal lag 

optimal lag 
optimal lag 

for T 



Nonlinear Ensemble Transform Filter & Smoother 

Summary 

!  Nonlinear ensemble transform filter/smoother (NETF/S) 

"  Update state estimate as particle filter 

"  Transform ensemble using covariance matrix 

!  NEMO ocean test case 

"  NETF filtering performance similar to LETKF 

"  Slower convergence 

"  Sensitive on ensemble size 

"  Successful smoothing 

•  Dependence on lag distinct for LETKS & NETS 
(due to different update schemes) 

Thank you! 


